
Algorithms for Hardware Accelertaed
Hair Rendering

Tae-Yong Kim*
tae@rhythm.com

Rhythm & Hues Studio

*formerly at the University of Southern California

Algorithms for Hardware Accelertaed
Hair Rendering

Tae-Yong Kim*
tae@rhythm.com

Rhythm & Hues Studio

*formerly at the University of Southern California

 
 
In this talk, I will discuss issues related to hair rendering and introduce practical 
algorithms for hardware accelerated hair rendering.  More specifically, I will 
introduce a simple antialiasing algorithm amenable for hardware accelerated hair 
drawing, the opacity shadow maps algorithm for hair self-shadow computation, and a 
programmable shader implementation of Kajyia-Kay hair shading model.  All the 
examples are shown in an OpenGL-fashion, but it should be straightforward to adapt 
these algorithms to other standard APIs such as Direct3D.   

Topics covered are 

• Issues in rendering hair with graphics hardware 
• A brief overview of self-shadow computation algorithms (shadow buffer, deep 

shadow maps, and opacity shadow maps) 
• Self-shadows generation with graphics hardware (opacity shadow maps) 
• Bin sort based visibility ordering for antialiased hair drawing 
• Local shading computation with programmable graphics hardware  

 
Additional Materials 
1. Tae-Yong Kim and Ulrich Neumann, Opacity Shadow Maps, Eurographics 
Rendering Workshop 2001 (reprinted in the course note). 
2. Tae-Yong Kim, Modeling, Rendering, and Animating Human Hair, Ph. D. 
Dissertation, University of Southern California, 2002 (available at 
http://graphics.usc.edu/~taeyong) 
 
 



1. Introduction 
 

Hair is considered one of the most time-consuming objects to render.  There are many 
reasons why hair rendering becomes such a time-consuming task. 

First of all, when rendering hair, we deal with a very complex geometry.  The number 
of hair strands often ranges from 100,000 (for the case of human hair) to some 
millions (animal fur).  Moreover, each hair strand can have geometrically non-trivial 
shape.  For example, let’s assume that each hair strand is drawn with 20 triangles.  A 
simple multiplication says that we’d be dealing with a large geometry consisting of 
several or tens of million triangles!  This geometric intricacy complicates any task 
related to hair rendering.   

Second issue is the unique nature of the hair geometry.  A hair strand is extremely 
thin in diameter (~0.1 mm), but can be as long as it grows.  This property causes a 
severe undersampling problem, aliasing.  The sampling theorem dictates that the 
number of samples to reconstruct a signal (in our case, hair geometry) should be 
higher than the maximum frequency of the signal.   Assume that we draw a hair strand 
as thin triangle strips.  According to the sampling theory, the size of a pixel1 should be 
smaller than half the thickness of the thinnest hair.  In practice, this is equivalent to 
having an image resolution of 10,000 by 10,000 pixels when the entire screen is 
approximately covered by somebody’s hair.  Moreover, when hairs are far away, the 
required sampling rate should increase!  The current display devices hardly reach this 
limit, and are not likely to reach this limit in the near future.  Thus, correct sampling 
becomes a fundamental issue for any practical hair rendering algorithms. 

Third issue is the optical property of hair fibers.  A hair fiber not only blocks, but also 
transmits and scatters the incoming light.  As an aggregated form, hairs affect the 
amount of lighting onto each other.  For example, a hair fiber can cast shadows onto 
other hairs as well as receive lights transmitted through other hairs.  Due to the unique 
geometric shape of hair, the amount of light a hair fiber reflects and scatters varies 
depending on the relationship between hair growth direction, light direction, and eye 
position.  This effect is known as anistropic reflectance, and defines one of the most 
prominent characteristics of a hair image  (you can easily notice that the direction of 
the highlight is always perpendicular to the direction of hair growth). 

All these issues (number of hairs, sampling issues, and complexity of lighting) make 
hair rendering a computationally demanding task.  In a naïve form, a software 
renderer 2  (that is not parallelized, and does not utilize any graphics hardware 
capability) will demand significant computation time.  Fortunately, recent progresses 
in graphics hardware shed some lights.  The fastest GPUs at the time of this writing 
(march, 2003) can now render up to 80 million triangles per second, or 2 ~ 3 million 
triangles per frame (30 fps).  More promisingly, the raw performance of current GPUs 
increases at a faster rate than that of the general purpose CPUs.  So, it seems natural 
to consider hardware acceleration methods for hair rendering.  However, one should 
                                                 
1 A pixel is essentially a point sample.  The extent of a sampling region and the pixel sample (color, 
depth…) should be differentiated.  For convenience, we let the size of a pixel denote that of the 
sampling region. 
2 Here a ‘software renderer’ refers to a rendering program that is solely dependent on general purpose 
CPUs.   In contrast, a ‘hardware renderer’ refers to a rendering program that utilizes specialized 
graphics hardware (such as OpenGL API).  In the note, the term ‘hardware’ will not really mean a 
dedicated hardware for hair rendering although there is no reason why there can’t be such hardware!  



keep in mind that most existing graphics cards are not designed for small objects such 
as hairs.  These create a number of difficulties when we use graphics hardware for 
hair rendering.  

2. Tiny, tiny triangles 

A hair fiber is naturally represented with a curved cylinder.  Thus, it is tempting to 
draw a hair as some tessellated version of a cylinder (Figure 1).   

This model is totally valid if we were living in a microscopic world where we see just 
a few hairs in our view.  In practice, we deal with so many hairs that this naïve 
method would generate too many triangles.  Moreover, a hair is so thin that the curved 
shape of the cylinder will be rarely noticeable.  Alternatively, we can approximate 
hair as a flat ribbon that always faces towards the camera (Figure2).  In practice, this 
model approximates hair very well since variation of color along hair’s thickness is 
often ignorable.  

We can further simplify the geometry and draw hair as a connected line strips (Figure 

Figure 1. A hair as tessellated cylinder. 

Figure 2. Hair as a flat ribbon. 



3). Although mathematically a line should be infinitesimally thin, a line in this case is 
associated with some artificial thickness value (often a pixel’s width).   

For the convenience of discussion, I will use the line strip as our hair representation, 
but discussions and algorithms here equally apply to the polygonal ribbon 
representation.  Let’s assume that a hair strand is approximated with a number of 
points p0, p1,… pn-1 and its associated colors c0,c1,…cn-1.  The following code will 
draw a hair as a connected line strip. 

 
 DrawHair(p0,p1,..,pn-1,c0,c1,….cn-1) 

 { 

  glBegin(GL_LINE_STRIP) 

  glColor3fv(c0); 

  glVertex3fv(p0); 

  glColor3fv(c1); 

  glVertex3fv(p1); 

  … 

        glColor3fv(cn-1); 

  glVertex(pn-1); 

  glEnd()  

} 

Routine1. DrawHair 

 
Optimistically, by calling this function repeatedly, you might think that we will able 
to draw as many hairs as we want.  Unfortunately, it is not that simple… 

Figure 3. Hair as a line strip. 



Without 
Antialiasing

With
Antialiasing

Figure 4. Importance of antialiasing in hair 
rendering
Figure 4. Importance of antialiasing in hair 
rendering

 
When many lines are drawn, the approach will suffer from severe aliasing artifacts as 
shown in the image above (without antialiasing).  Current graphics hardware almost 
always relies on the Z-buffer algorithm to determine whether a pixel’s color should be 
overwritten.  The z-buffer algorithm is a point sampling algorithm.  A pixel’s color 
(or depth) is determined entirely by a limited number of point samples (the default 
setting being just one sample per pixel).   

See Figure 5.  Assume that three lines cover a pixel and each line’s color is red, green, 
and blue, respectively.  If each line covers exactly one third of the pixel’s extent, the 
correct color sample of the pixel should be an averaged color of the three colors - gray.  
Unfortunately, a single point sample will cause the pixel to change in color to either 
of the three.  So, instead of gray (a true sample), the pixel’s color will alternate in red, 
blue, and green, depending on the point sample’s position.   

Point samples

Computed sample color
True sample

Figure 5. Consequence of point samplingFigure 5. Consequence of point sampling

 



Now we are aware that the Z-buffer, the most common sampling algorithm in many 
graphics hardware, is not designed for small objects such as hair.  In a point sample-
based algorithm such as Z-buffering, the number of point samples determines the 
quality of the final image.  The required number of samples is closely related to the 
complexity of the scene.  The rule of thumb is that there should be at least as many 
samples as the number of objects that fit in a pixel.  That’s why we often don’t see 
much aliasing when we draw relatively large triangles, but in hair.  There are ways to 
increase the number of samples.  The most common method is the accumulation 
buffer.  In this method, the number of samples per pixel corresponds to the number of 
accumulation steps performed.   However, accumulation buffers tend to be slow in 
many OpenGL implementations and the accumulation steps must be performed at 
every frame.   

The thickness of a hair is often much smaller than the size of a pixel.  So, it seems 
natural to draw a line with small alpha value and the attempt will prove fine for one 
line.  However, as more lines (hairs) are drawn, we will encounter a similar problem 
we had before.  The alpha blending in OpenGL requires that the scene should be 
sorted by the distance from the camera.  Otherwise, the image will not look right – 
you will see through the pixels (Figure 6).   

Correct Wrong

Figure 6. Alpha blending needs correct visibility 
ordering
Figure 6. Alpha blending needs correct visibility 
ordering

 
In short, we need to 1) sample each hair correctly, 2) draw each hair with the correct 
thickness, and 3) blend the colors of all the hairs correctly.  Many current graphics 
hardware offer decent, if not perfect, hardware accelerated antialiased line drawing 
features.  To draw each hair with correct sampling, we can exploit the feature.  To 
draw each hair with the correct thickness, we set the alpha value of each line to a 
small (<1.0) value.  To blend the colors correctly, we use the alpha blending with the 
correct visibility order.  Both hardware line antialiasing and alpha blending require a 
correct visibility order.  So, we will do the visibility ordering by ourselves, departing 
from the troublesome Z-buffering.   



2.1 Further Readings 
For rigorous discussions on issues with point sampling, refer to the following papers. 

• D. Mitchell, Consequences of stratified sampling in graphics, SIGGRAPH 
Proceedings, 1996, 277-280 

• T. Lokovic and E. Veach. Deep shadow maps, SIGGRAPH Proceedings, 2000, 
385-392 

• A. R. Smith. A Pixel is Not A Little Square, A Pixel is Not A Little Square, A 
Pixel is Not A Little Square! (And a Voxel is Not a Little Cube), Tech Memo 
6, Microsoft, Jul 1995 

 

3. Visibility ordering for antialiased hair drawing 
For correct visibility computation, we need to draw hair far to near (or near-to-far as 
long as it is consistent).  Assume that each hair is broken into line segments, and we 
draw a large number of such line segments for the entire hair model.  Antialiasing can 
be performed in two steps.  First, the visibility order of a given hair model is 
determined based on the distance to the camera (Figure 7).  The bounding box of all 
the segments is sliced with planes perpendicular to the camera.  Each bin, a volume 
bounded by a pair of adjacent planes (drawn as a colored bar in Figure 7), stores 
indices of segments whose farthest end point is contained by the bin.  After other 
objects (e.g., a head mesh) are drawn, the depth buffer update is disabled.  Then, the 
segments are drawn as antialiased lines such that the ones indexed by the farthest bin 
are drawn first. 

Figure 7. Bin-based Visibility OrderingFigure 7. Bin-based Visibility Ordering

r
o

k

a

d

b
c

e
g

f

v

s
u

p

t

q
m

hi

j

ln

k,l,m

d,e

c

f,g,h

i,j

n,o,p,q

r,s,t

u,v

b

a

 
The end points of line segments are grouped into a set of bins that slice the entire 
volume (Figure 7).  The bin enclosing each point is found by 

Ni
DD
DDNi <≤








+−

−
= 0,

minmax

min

ε
       



, where i is the index for the bin and N is the number of bins.  D is the distance from 
the point to the image plane.  Dmin and Dmax are minimum and maximum of such 
distances, respectively.  ε is a constant such that  

N
DD minmax −

<ε . 

Given a point pr  and the camera positioned at cr  looking in direction of d
r , the 

distance to the image plane is computed by 

dcpD
rrr

⋅−= )(         

Precise visibility ordering of lines is difficult to obtain by depth sorting alone.  When 
lines are nearly parallel to the image plane, the errors are small, provided the spacing 
between bins is dense enough.  However, when line segments extend over many bins, 
the visibility order cannot be determined either by maximum depth or minimum depth.  
Such lines could be further subdivided.  However, on the other hand, the pixel 
coverage of such a line tends to be small.  For example, when a line is perpendicular 
to the image plane, the pixel coverage of the line is at most a single pixel.  In practice, 
using maximum depth for every line produces good results. 

In the drawing pass, each bin is accessed from the farthest to the closest.   For each 
bin, the line segments whose farther points belong to the bin are drawn.  Each line 
segment is drawn with hardware antialiasing.  The color of each line segment is 
accumulated using  

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA) 

The bin-based visibility ordering algorithm can be summarized as follows. 

 
Visibility ordering pass: 

For every line segment,  

1. compute the depth of the end points.   

2. using the larger depth, compute the bin location 

3. add the index of the line to the bin. 

Drawing pass: 

1. Enable the depth buffer 

2. Draw all the other scene objects 

3. Disable the depth buffer 

4. For each bin, from the farthest bin to the nearest, 

 Draw all the line segments whose indices are stored in the bin 

 

Note that since the line segments are drawn in a correct order, all the hardware 
features can be now happily exploited (antialiased line drawing, alpha blending).  
Although simple, the method is fast and converges to exact ordering as hair strands 
are drawn with more segments.  The visibility-ordering algorithm runs at about 
700,000 lines per second on a Pentium III 700Mhz CPU.  Another benefit is that we 
can separate the visibility ordering pass from the actual drawing pass.  For example, 
during interactive modeling, the viewpoint does not change much from frame to 
frame.  This coherence enables performing the visibility ordering periodically and 
reusing the computed order for subsequent frames.  In Figure 8, the image in the 



middle was drawn with a previously computed visibility order where the head model 
was rotated by 30 degree along the y-axis.  Although the difference image shows that 
there’s some discrepancy against the correct order (left image), visual degradation is 
not so objectionable.  In contrast, depth buffer based super-sampling methods (e.g., 
accumulation buffer) must compute visibility at every frame.   

Figure 8. Coherence of Visibility OrderFigure 8. Coherence of Visibility Order

CorrectCorrectCorrect ReusedReusedReused Difference 
Image
Difference Difference 
ImageImage

 
In addition, the alpha values of line segments can control the perceived thickness of 
hair strands.  As hair strands become thinner, super-sampling methods would require 
more samples while alpha value changes suffice in the visibility-ordered hair model 
(Figure 9).   

 

Figure 9. Thickness Change Figure 9. Thickness Change 

α =0.09           0.25              0.60              1.0

 



   

 

4. Self-shadows 
Hairs cast shadows onto each other, as well as receive and cast shadows from/to other 
objects in the scene.  Especially, self-shadows create crucial patterns that distinguish 
one hairstyle from others.  Without self-shadows, the underlying structure of a hair 
model cannot be correctly visualized (Figure10).  This section introduces an efficient 
shadow generation algorithm that makes full use of graphics hardware accelerator. 

No shadowsNo shadows With shadowsWith shadows

Figure 10. Self-shadows are crucial for volumetric hairFigure 10. SelfFigure 10. Self--shadows are crucial for volumetric hairshadows are crucial for volumetric hair

 
There are mainly two issues with self-shadows in hair rendering – the thin geometry 
of the hair fiber and the translucency.  The thin geometry of hair causes serious 
aliasing artifacts in shadow computation in a very similar way as in the previous 
section.  This is not surprising if we note that the shadow computation is just one 
instance of the more general visibility computation problem.  For hair drawing, we 
computed the visibility of each hair from the camera.  For shadow computation, we 
need to compute the visibility of each hair from the light source.  If the hair sees more 
lights, it will receive more illumination from the source, and if the hair can’t see the 
light, it will be left dark (or shadowed).   

 

Another important aspect in hair self-shadowing is that a hair fiber often does not 
completely block the incoming light.  It not only reflects and scatters the incoming 
illumination, but often lets the light pass through.  This unique property of the hair 
fiber is the most clearly observable in the ‘back lighting’ situation where the 
silhouette shines brightly when the light is put behind (Figure 11).  



Figure 11.  Translucency of hairFigure 11.  Translucency of hair

Front lightingFront lighting Back lightingBack lighting
 

In the previous section, we discussed the problems in using Z-buffer for hair 
rendering.  When the Z-buffer is used for shadow computation, it is called ‘shadow 
map’.  In this depth-based shadow map (DBSM), the scene is rendered from the 
light’s point of view and the depth values are stored.  Each point to be shadowed is 
projected to the light’s camera and the point’s depth is checked against the depth in 
the shadow map.   

One attractive feature of the traditional shadow map is that the shadow map can be 
generated with hardware by rendering the scene from the light’s point of view and 
storing the resulting depth buffer.  However, severe aliasing artifacts can occur with 
small semi-transparent objects.  As discussed in the previous section, in a dense 
volume made of small primitives, depths can vary radically over small changes in 
image space.  The discrete nature of depth sampling limits DBSM in handling such 
objects.  The binary decision in depth testing inherently precludes any translucency.  
Thus, DBSM is unsuited for volumetric objects such as hairs.   

The transmittance τ(p) of a light to a point p can be written as   

 )exp()( Ω−=pτ ,  where ∫=Ω l
t dll0 ')'(σ          (1) 

In (1), l is the length of a path from the light to the point, σt is the extinction (or a 
density) function along the path.  Ω is the opacity value at the point.   

The deep shadow maps (DSM) algorithm originally presented at SIGGRAPH 2000 
proposed that each pixel stores a piecewise linear approximation of the transmittance 
function instead of a single depth, yielding more precise shadow computation than 
DBSM.  Deep shadow maps account for the two important properties of hair shadows.     

 



Partial visibility:  In the context of shadow maps, the transmittance function can be 
viewed as a partial visibility function from the light’s point of view.  If more hairs are 
seen along the path from the light, the light will be more attenuated (occluded), 
resulting in less illumination (shadow).  As noted earlier (recall Figure 5), visibility 
can change drastically over the pixel’s extent.  The transmittance function handles this 
partial visibility problem by correctly integrating and filtering all the contributions 
from the underlying geometry.    

Translucency: a hair fiber not only reflects, but also scatters and transmits the 
incoming light.  Assuming that the hair fiber transmits the incoming light only in a 
forward direction, the translucency is also handled by the transmittance function.   

Despite the compactness and quality, however, due to the underlying data structure 
(linked list), a hardware implementation becomes tricky with deep shadow maps.       

The Opacity Shadow Maps (or OSM) was originally designed as a fast alternative to 
DSM for computing the transmittance function.  Opacity shadow maps (or OSM) 
algorithm uses a set of parallel opacity maps oriented perpendicular to the light’s 
direction (Figure 12).   

)exp()( Ω−=pτ ∫=Ω l dll0 ')'(ρ

Ω(l)

l

Transmittance Opacity

Monotonically 
increasing 

Figure 12. Opacity Shadow MapsFigure 12. Opacity Shadow Maps

 
By approximating the transmittance function with discrete planar maps, opacity maps 
can be efficiently generated with graphics hardware.  On each opacity map, the hair 
model is rendered from the light’s point of view, clipped by the map’s depth (Figure 
13).  Instead of storing depth values, each pixel stores Ω, the line integral of densities 
along the path from the light to the pixel.  The opacity values from adjacent maps are 
then sampled and interpolated during rendering.   
 



Di
Figure 13. Opacity MapsFigure 13. Opacity Maps

 
 

 

 

4.1 Basic Algorithm  
Opacity shadow maps heavily rely on graphics hardware and operate on any bounded 
volumes represented by standard primitives such as points, lines and polygons. (In our 
context, hairs are represented as a cluster of lines.)  The hair volume is sliced with a 
set of opacity map planes perpendicular to the light’s direction.  The scene is rendered 
to the alpha buffer, clipped by each map’s depth.  Each primitive contributes its 
associated alpha value.  The alpha value is a user-controllable parameter that depends 
on the size (thickness) and the optical property of hair.  It also depends on the 
resolution of the opacity maps.  Each pixel in the map stores an alpha value that 
approximates the opacity relative to the light at the pixel’s position.  The opacity 
values of adjacent maps are sampled and linearly interpolated at the position of each 
shadow computation point, to be used in a shadowed shading calculation.    

 

The pseudo code in Routine 2 uses the following notation.  P is the set of all the 
shadow computation sample points (or simply shadow samples).  N is the number of 
maps and M is the number of shadow samples.  Di is the distance from the opacity 
map plane to the light (1 ≤ i ≤ N).  Pi is a set of shadow samples that reside between 
Di and Di-1.  pj is jth shadow sample (1 ≤ j ≤ M).  Depth(p) returns a distance from p to 
the light.  Ω(pj) stores the opacity at pj.  τ(pj) is the transmittance at pj.  Bprev and 
Bcurrent are the previous and current opacity map buffers. 



Routine 2.  Opacity Shadow Maps 
1. D0 = Min (Depth(pj)) for all pj in P (1 ≤ j ≤ M) 
2. for (1 ≤ i ≤ N)      (Loop 1)      
3.     Determine the opacity map’s depth Di from the light  
4. for each shadow sample point pj in P (1 ≤ j ≤ M)   (Loop 2)   
5.      Find i such that Di-1≤  Depth(pj) < Di   
6.         Add the point pj  to Pi.                
7. Clear the alpha buffer and the opacity maps Bprev, Bcurrent.     
8. for (1 ≤ i ≤ N)      (Loop 3)   
9.     Swap Bprev and Bcurrent.        
10.     Render the scene clipping it with Di-1 and Di. 
11.     Read back the alpha buffer to Bcurrent. 
12.      for each shadow sample point pk in Pi   (Loop 4) 
13.          Ω prev = sample(Bprev , pk)      
14.        Ω current = sample(Bcurrent , pk)      
15.           Ω = interpolate (Depth(pk), Di-1, Di, Ω prev, Ω current)  
16.           τ(pk) = e-κΩ      
 
In loop 1, the depth of each map is determined.  Uniform slice spacing is reasonable 
for evenly distributed volumes.  Prior to shadow computation, shadow samples are 
prepared.  In our hair representation, the primitives (line segments) tend to be very 
small and thus the end points of lines often suffice.  Thus, for each hair strand, we 
choose the endpoints of line segments as shadow samples.  More samples can be 
taken if needed.  When many samples are required for each primitive, it may be useful 
to pre-compute the visibility and use only the visible points as shadow samples.   
Loop 2 prepares a list of shadow samples that belong to each buffer.  Note that this 
procedure is exactly the same as the bin-based visibility sorting method in section 3.  
Thus, the same code can be reused here.   

Each pixel in the map stores the opacity value, which is a summation that produces 
the integral term Ω in equation (1).  Thus each line segment can be rendered 
antialiased with full hardware support in any order (the order can be arbitrary due to 
the commutative nature of integration).  The alpha buffer is accumulated each time 
the volume is drawn with the OpenGL blend mode glBlendFunc(GL_ONE,GL_ONE).  
The depth buffer is disabled.  Clipping in line 10 ensures correct contribution of alpha 
values from the primitives and culls most primitives, speeding up the algorithm.  

As loop 3 and 4 use only two opacity map buffers at a time, the memory requirement 
is independent of the total number of opacity maps computed.  In loop 4, the shadow 
is computed only once for each sample.  So, the amortized cost of the algorithm is 
linear in the number of samples.  The overall complexity is O(NM) since the scene is 
rendered for each map, but the rendering cost is low with hardware acceleration.   

The sample function in loop 4 can be any standard pixel sampling function such as a 
box filter, or higher-order filters such as Bartlett filter and Gaussian filter.  For the 
examples shown here, a 3x3 averaging kernel is used.  Such filtering is possible 
because alpha values are stored instead of depths.  The sampled opacity values Ω prev, 
Ω current are linearly interpolated for each point pk (Figure 14).     



)-/())((,)0.1()(p 1-ii1currentprevk DDDpDepthttt ik −−=Ω+Ω−=Ω

Figure 14. Interpolating the opacity valuesFigure 14. Interpolating the opacity values

 
A higher order interpolation may be used.  For example, four buffers can be used for a 
cubic-spline interpolation.   

A volume turns opaque as the opacity Ω reaches infinity.  The quantization in the 
alpha channel limits the maximum amount of opacity that a pixel can represent.  A 
constant κ in line 15 controls the scaling of opacity values such that e-κ = 2-d, where d 
is the number of bits per pixel (for example, κ is about 5.56 for 8 bit alpha buffer).  
Thus, an opacity value of 1.0 represents a complete opaqueness.   

)exp()( Ω−=pτ

)exp()( Ω−= κτ p

1.0

1.0

1.0

Figure 15. Scaling the opacityFigure 15. Scaling the opacity

Ω

τ

τ

 



4.2 Additional Clipping  
A simple modification can yield a significant speedup in the basic algorithm.  When 
shadow sample points coincide with the end points of the line segments, we can 
exploit the fact that the line segments are depth-sorted.  At each opacity map 
generation step, we can check if the line segments reside in the current depth range 
(Di-1 and Di).  The line 10 in Routine 2 (shown below) 
10.      Render the scene clipping it with Di-1 and Di.  

can be augmented as  
10.a          For each line segment (p1,p2) , compute Depth(p1) and Depth (p2). 

10.b          Draw the line only if Di-1 <.Depth(p1) < Di  or Di-1 <.Depth(p2) < Di 

With this additional scene culling scheme, the observed time complexity becomes 
close to O(N). 

4.3 Examples 

Figure 16 illustrates a test scene where the number of maps (N) was varied.  Note that 
the tradeoff between speed and image quality can be achieved by varying the number 
of maps.  The rendering time is linear in the number of maps when the basic 
algorithm was used.  With the modification in section 4.2, the rendering time becomes 
sub-linear in the number of maps (about 12 secs for N = 500) since the number of 
primitives drawn to each map decreases as the number of maps increases. 

N = 7(5secs) N = 15(7secs) N = 30(10secs)

N = 60(16secs) N = 100(25secs) N = 200(46secs) N = 500(109secs)

No shadow

Figure 16. ResultsFigure 16. Results

 



4.4 Further Readings 
More details of the original deep shadow maps algorithm as well as an excellent 
discussion on aliasing in hair shadows can be found in 

• T. Lokovic and E. Veach. Deep shadow maps, SIGGRAPH Proceedings, 2000, 
385-392 

For more discussions and results for the Opacity Shadow Maps algorithm, refer to 
• Tae-Yong Kim and Ulrich Neumann, Opacity Shadow Maps, Eurographics 

Rendering Workshop 2001 (reprinted in the course note). 

A modification on the transmittance function computation in OSM is suggested in  

• Johnny Chang, Jingyi Jin, Yizhou Yu, A Practical Model for Mutual Hair 
Interactions, ACM SIGGRAPH Symposium on Computer Animation, July 
2002 (reprinted in the course note). 



5. Shading Model 
A shading model describes how much a hair fiber reflects or transmits in a given 
direction when the hair fiber is fully lit.  Since global aspects such as shadows are not 
accounted for, the term local shading model is often used.  It is often assumed that the 
shape of a hair strand on its local neighborhood is a straight cylinder (Figure 17).  A 
hair shading model is often constructed the function of three vectors, L, the light’s 
direction, V, the viewing direction, and T, the tangent vector.   

Figure 17.  Hair shading geometry

L

V

T

H

 
The most commonly used shading model is the one originally developed by Kajiya 
and Kay.  The model is composed of a Lambertian diffuse component and an 
anistropic specular component.  In the Kajiya-Kay model, a Lambertian cosine falloff 
function is used for diffuse lighting.  The closer the light is to the normal, the more 
illumination is received.   

),sin( LTK dDiffuse =Ψ         

, where Kd is a scaling parameter for the diffuse illumination and (V1,V2) denotes the 
angle between two vectors V1,V2.  

A non-diffuse (specular) illumination is computed using the viewing vector V.  The 
specular illumination becomes the biggest when the half vector H = (L + T) / 2 
becomes perpendicular to the tangent vector.  The Kajiya-Kay model computes  

p
sSpecular VTLTVTLTK )],sin(),sin())([( +⋅⋅=Ψ        

Thus, the amount of light a hair fiber scatters in the direction of V can be written as 
p

sdSpecularDiffuseHair VTLTVTLTKLTK )],sin(),sin())([(),sin( +⋅⋅+=+= ΨΨΨ  

 



Multiplying the transmittance function τ computed from section 4, the (shadowed) 
color of a point on the hair fiber can be expressed as  

)( SpecularDiffuseHair ΨΨτΨ +=         

To be accurate, the transmittance function and shading model should be computed at 
every pixel sample.  However, the colors tend to smoothly vary along hair’s length.  
In practice, computing the shaded color only at the end points of line segments often 
yield good results (analogous to the Gouraud shading for polygons).   

5.1 Further Readings 
Improvements on the original Kajiya-Kay model were introduced by Banks [1994] 
and Goldmann [1997].  Read the following papers for more details. 

 
• J. Kajiya and T. Kay, Rendering fur with three-dimensional textures, 

SIGGRAPH Proceedings, Vol. 23, pp. 271-280, 1989. 
• D. C. Banks, Illumination in diverse codimensions, SIGGRAPH Proceedings, 

pp. 327-334, 1994 
• D. Goldman, Fake Fur Rendering, SIGGRAPH Proceedings, pp. 127-134, 

1997. 

6. Data structure 

Since shadows are view-independent, it is often convenient to precompute the shadow 
values at the end points of each line segment and reuse the shadow values during the 
viewpoint change.  For each line segment, we use the following data structure. 
 

 
The position of each end point comes from the hair model.  The tangent vectors are 
derived from the position.  With these position and tangent vectors, the (unshadowed) 
colors are computed with the shading model.  The shadow values are computed with 
the opacity shadow maps algorithm. 

Then, the entire procedure of hair rendering using graphics hardware can be 
summarized as 

Routine 3 

Setup pass: 
 Compute the visibility order  

 Compute shadow values 

Drawing pass 
 For each line segment Li ordered due to the visibility order 

Shadow2 Color2 Tangent2Pos2 

Shadow1 Color1 Tangent1Pos1 



  Set thickness (alpha value) 

 Compute the shaded color (Li.color1) 

 Compute the shaded color (Li.color2) 
C1 = Li.color1 * Li.shadow1 

C2 = Li.color2 * Li.shadow2 

glBegin(GL_LINES) 

  glColor3fv(C1) 

  glVertex3fv(Li.Pos1) 

  glColor3fv(C2) 

  glVertex3fv(Li.Pos2) 

  glEnd()  

Since line segments are connected, all the information shown above is duplicated.  A 
more efficient implementation is thus to store all the position, color, tangent 
information in a vertex table and let each line be represented by indices to the table, as 
shown in Figure 18. 

..........

..........

..........

ShadowNColorNTangentNPosNN

..........

Shadow4Color4Tangent4Pos44

Shadow3Color3Tangent3Pos33

Shadow2Color2Tangent2Pos22

1

Index

Shadow1Color1Tangent1Pos1

ShadowColorTangentPos

Vertex table

N-1
..
..
4
3
2
1

V1

NM
....
....
54
43
32
21

V2Index

Line table

Figure 18.  Data structures

 

7. Hair shading with Programmable Vertex Shader 

The computation of shaded color can be further accelerated with the use of 
programmable vertex shader.  In this case, the color field will be computed on the fly 
inside the vertex shader.  Routine 3 will change as follows.   

Routine 4 

Setup pass: 
 Compute the visibility order  

 Compute shadow values 



Drawing pass: 
 For each line segment Li ordered due to the visibility order 

  Set thickness (alpha value) 

  Draw Li with programmable shader 

The inputs to the vertex shader are the camera position, the light position, shading 
parameters, position, tangent vector, and shadow values for each vertex.  An example 
implementation of a hair shader is given in Figure 19 as nVidia CG program. 

 
 
 

Figure 19. cg program for Kajiya-Kay shading model 



Figure 20.  Hair shaded in realtime

 
7.1 Further Readings 
For more details on the CG compiler, refer to CG manual that can be downloaded 
from http://www.nvidia.com 

  


