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Motivation
> Market demands larger, more complex game worlds

> GPUs can consume ever increasing amounts of data, producing high
fidelity images

> Two major issues
1. Cost of authoring these datasets is increasing

2. Mass storage (Hard Drive and DVD) and volatile storage (RAM) are slow 
and small compared to the ability of the GPU to consume data

> Amplify the data
> Get the most out of what we build

> Get the most out of what we have loaded in memory at any given time
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[Smith84] – Plants, Fractals and Formal Languages

> SIGGRAPH paper which coined the term database amplification

> Discussion of plant and mountain growth using L-systems and 
particle systems

> Two exciting properties:
1. Database amplification – Complex images from small datasets

> If you can generate it, an artist doesn’t have to build it

> Consoles and PCs have limited memory relative to processing power

> Network bandwidth is limited.  Would be nice to “grow” data from seeds sent 
across the wire. Has LOD opportunities built right in.

2. Emergence – Complex appearance from simple rules
> Can generate more variety and volume than an artist could ever build
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From [Dube05]

Procedural Textures
> Combine signals at different 

frequencies to make more stuff

> Examples
> Clouds

> Hybrid procedural and 
authored approaches

> Wang tiles

> Flow-bases synthesis

> Fourier-domain water 
synthesis
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Hybrid procedural approaches
> In a recent Game Developer Magazine article, Sean 

Barrett discusses Hybrid Procedural Textures
> Find a middle ground between sampling and 

synthesis

> You may already be doing something like this with 
detail textures
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[Cohen03] Wang Tiles

> Set of square texture maps which can be used 
to tile a surface

http://research.microsoft.com/~cohen/WangFinal.pdf
http://research.microsoft.com/~cohen/WangFinal.pdf
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[Bhat04] Flow-based Video Synthesis and Editing 
> Analyze real-world video

> Use a particle model to synthesize video/texture 
of continuous flow

> Could also think of this as a kind of compression

> Could integrate naturally into many 3D scenes

http://graphics.cs.cmu.edu/projects/flow/
http://graphics.cs.cmu.edu/projects/flow/
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0
Texture Arrays
> New type of texture construct coming in the 

future

> These are not volume textures

> Mip-mapping is different

> Pixel shader sampling instruction specifies 
texture coordinates and array index in argument

1

…

n
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Fluid Navier-Stokes equations
> It is now possible to do 2D fluid 

simulations on GPUs

> Can be useful for generating 
decorative smoke wisps
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Integration into scene
> Obviously, this doesn’t have to be 

physically accurate, just plausible

> Once you have the implementation and the 
GPU cycles to burn, you can drop this sort 
of thing in anywhere
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Geometry Amplification
> It’s easy to play games with textures using pixel shaders, but how do 

we amplify our geometry?

> Synthesis
> Make more!

> Instancing
> Reuse the data in interesting ways which hide the replication
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Geometry synthesis
> Textures are easy to generate using pixel shaders as image processing 

kernels, but we want to process geometry too

> For certain 1:1 or many:1 operations, GPU-based geometry processing 
and generation is real

> Really it has been around a while, but the APIs are in the way

> Want to synthesize data on demand rather than store a lot of it
> This includes geometry!
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On-demand Synthesis of Water
> Storing lots of precomputed water animation takes up lots of memory

> Would be nice if it could be generated on demand

> Computing water animation via realistic simulation in real-time is 
expensive

> It just has to be plausible

> Simply scrolling noise can look OK, but we want to do better
> We’ve done scrolling noise in the past, but we can do better
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Two Classes of Approach
> Spatial domain

> Compute superposition of a finite set of waveforms directly

> Can be sinusoids or trochoids or something more arbitrary

> Fourier domain
> Synthesize and animate spectrum of ocean water

> Take IFFT to get height and normal maps
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[Mastin87] Fourier Synthesis of Ocean Scenes
> Transformed white noise to the Fourier domain and then filtered it using a spectrum which resembles ocean 

water
> Used the Pierson-Moskowitz spectrum which was derived from real ocean wave measurements
> Relates wind speed to spectrum of sea

> Inverse FFT of the filtered result produces a tileable height map which resembles ocean waves
> Can portray wave motion by manipulating the phase

Frequency Domain Spatial Domain

*

White 
Noise

Pierson-
Moskowitz 
Spectrum FFT

Water 
HeightIFFT
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[Tessendorf99] Simulating Ocean Water
> Did water for Waterworld, Titanic and 

many others
> Works with sums of sinusoids but starts in 

Fourier domain
> Can evaluate at any time t without having 

to evaluate other times
> Uses the Phillips Spectrum and describes 

how to tune it to get desired looks
> Roughness of the sea as a function of wind speed
> Directional dependence to simulate waves 

approaching shore
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[Jensen01] Deep-Water Animation and Rendering

> Adopted many techniques from Tessendorf, 
all in real time

> Used low frequencies to displace geometry 
and high frequencies in a normal map

> First attempt at Fourier synthesis of ocean 
water in real time, but IFFT was done on the 
CPU

> Also played with all sorts of other things like 
foam, spray, caustics and godrays



19Data Amplification

FFT on the GPU
> A couple of different GPU-based FFT implementations have been  

developed in the last few years
> Some colleagues and I published an implementation of Cooley and Tukey’s 

“Decimation in Time” algorithm, which we published in an image processing 
chapter in ShaderX2 [Cooley65] [Mitchell03] .

> [Moreland03] also published a paper on doing the FFT on a GPU

http://www.ph.utexas.edu/~itiq/chiu/cooley/
http://www.ph.utexas.edu/~itiq/chiu/cooley/
http://www.ati.com/developer/shaderx/ShaderX2_AdvancedImageProcessing.pdf
http://www.ati.com/developer/shaderx/ShaderX2_AdvancedImageProcessing.pdf
http://www.cs.unm.edu/~kmorel/documents/fftgpu/
http://www.cs.unm.edu/~kmorel/documents/fftgpu/
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Migrate it all to the GPU
> If we can now do an FFT on the GPU, let’s do everything on the GPU

> The algorithm:
1. Load initial frequency data to static textures

2. For each frame
a. Generate Fourier spectrum at time t

b. Do IFFT to transform to spatial domain height field

c. Filter height field to generate normal map

d. Cast height field to vertex buffer to use as displacement stream

e. Render mesh tiles using displacement stream and normal map to shade
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Synthesized Water
> Apply synthesized height field 

to vertices and displace 
vertically

> Filter to create a normal map 
for shading
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Resulting renderingResulting rendering

Additional waveforms
> Easy to composite wake, eddies, simulation etc

> Precomputed waveforms or real-time 
simulation like the Navier-Stokes simulation 
demonstrated earlier

> Then filter to get normals for shading

Height + wakeHeight + wake NormalsNormals
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Single-band approach
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Dual-band approach
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Depth effects
> Shallow areas or foliage can damp out high frequencies

> Simply blend between broad and low band maps to 
approximate the look

Low BandLow Band Broad BandBroad Band Depth / Foliage  DampingDepth / Foliage  Damping
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Figure from Stam

Caustics
> Patterns caused by convergence of 

refracted or reflected light

> Important visual cue in certain scales of 
water rendering

> Refracted caustics in swimming pool or 
other shallow water

> Reflected caustics on boat hull

Reflected Caustics
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Interaction
> If the GPU does the amplification, what does this do to our interactions 

with the world, which are simulated on the CPU?
> Multi-resolution synthesis (low resolution on CPU for gross collision 

interaction & high resolution on GPU for rendering)
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Normal MapNormal Map PositionsPositions

[Gu02] Geometry Images
> Reparametrize mesh into square grid

> Since neighbors are implicit, it’s easy 
to process in this space using image 
processing concepts

> Reconstruct processed geometric 
model
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[Reeves85] Approximate and Probabilistic Algorithms for Shading and 
Rendering Structured Particle Systems

The Adventures of Andre and Wally B The Adventures of Andre and Wally B 

> Topology procedurally generated, with 
properties tuned to resemble known tree 
species

> Pixar used a structured particle system 
approach to rendering foliage in The 
Adventures of Andre and Wally B

> Up to 3000x data amplification
> Polygonal trunk / branches
> One particle system per tree

> Circles and Lines
> Simple procedural shading, taking into 

account depth into the tree and gross 
occlusion by neighboring tree bounds

http://www.pixar.com/shorts/awb/theater/short_320.html
http://www.pixar.com/shorts/awb/theater/short_320.html
http://www.pixar.com/shorts/awb/theater/short_320.html
http://www.pixar.com/shorts/awb/theater/short_320.html
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Particle Systems
> In [Kipfer04], the authors use the GPU to 

implement a particle engine they call Uberflow

> Particle-Particle and Particle-Scene collisions

> Can sort back to front

> Measure the following perf in frames per second:

0.41.474212010242

2831963205122

7391331556402562

CPU 
sorting, no 
collisions

Sorting, 
but no 

collisions

Particle-
Particle 

collisions

Collisions 
with height 

field

No 
collisions

http://wwwcg.in.tum.de/Research/Publications/UberFLOW
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Instancing and Variation
> Want to use a single source model at 

multiple physical locations in an 
environment

> The best way to handle groups of 
similar things

> Foliage, crowds

> Ideally done with one API call and no 
data replication

> Direct3D has recently added an 
instancing capability

> Use shaders to generate uniqueness 
across instances with spatially varying 
parameters

Copyright 2001 PDI/DreamworksCopyright 2001 PDI/Dreamworks
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Instancing in Practice
> New API in Direct3D

> Store per-instance data in a separate data stream

> Draw multiple instances in one shot

> Example from Far Cry, for a representative forest scene:
> Approximately 24 kinds of vegetation

> 4 types of grass (45 to 120 polygons per instance)

> 12 types of bushes (100 to 224 polygons per instance)

> 8 types of trees (500 to 1600 polygons per instance)

> Instancing on some scenes is very efficient. Number of draw-calls
(including other non-instanced objects) is reduced from 2500 to 430

> Far Cry doesn’t seem to do much sorting of foliage, which is one reason 
this works
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Hundreds of instanced characters
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Unique seeds for instanced shading
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0
Texture Arrays for Instancing
> Useful for providing unique look to instanced 

objects
> Index into an array of textures based upon 

some “state” stored with each instance (like 
color seeds on previous slide)

> Same “state” can be used to drive flow control 
as well

> Like being able to change texture handles mid 
draw call

1

…

n
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Procedural Environments
> 2D games have done this for years

> The demoscene does a ton of this

> Some games are now extending to 3D:
> Author time

> Run time
> Grafan
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.kkrieger by .theprodukkt.kkrieger by .theprodukkt

Demoscene
> To fit into 64kb or 96kb, the 

demoscene guys are doing a 
lot of procedural generation

> The 96kb game winner at 
Breakpoint 2004 (.kkrieger by 
.theprodukkt) uses a lot of 
procedural generation and they 
have even posted their tools 
online

.kkrieger by .theprodukkt.kkrieger by .theprodukkt

http://breakpoint.untergrund.net/
http://breakpoint.untergrund.net/
http://www.theprodukkt.com/kkrieger.html
http://www.theprodukkt.com/kkrieger.html
http://www.theprodukkt.com/kkrieger.html
http://www.theprodukkt.com/kkrieger.html
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Grafan from Emogence
> Environments are procedurally 

generated on-the-fly as a user 
traverses the game world

> Objects and entities are placed 
procedurally as the game world is 
built

> Assets like textures, objects, and 
entities are authored by artists

> Computation replaces bandwidth
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Related areas
> Higher Order Surfaces

> This is a massive topic that we don’t have time for here, but…

> Plants

> Terrain
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Summary
> Textures

> Compositing signals and noise, clouds
> Hybrid textures
> Wang Tiles
> Flow-based synthesis

> Geometry Synthesis
> Ocean Water
> Particle systems

> Instancing
> Drawing Crowds

> Other areas
> Plants
> Procedural cities
> Higher order surfaces

> Existence proofs
> Grafan (others in development)
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