
2004

Data Amplification
Jason Mitchell
3D Application Research Group Lead, ATI Research

2Data Amplification

Overview
> Motivation
> Data Amplification
> Textures

> Compositing signals and noise, clouds
> Hybrid textures
> Wang Tiles
> Flow-based synthesis

> Geometry Synthesis
> Ocean Water
> Particle systems

> Instancing
> Drawing Crowds

> Other areas
> Plants
> Procedural cities
> Higher order surfaces

> Existence proofs
> Grafan (others in development)

3Data Amplification

Motivation
> Market demands larger, more complex game worlds

> GPUs can consume ever increasing amounts of data, producing high
fidelity images

> Two major issues
1. Cost of authoring these datasets is increasing

2. Mass storage (Hard Drive and DVD) and volatile storage (RAM) are slow
and small compared to the ability of the GPU to consume data

> Amplify the data
> Get the most out of what we build

> Get the most out of what we have loaded in memory at any given time

4Data Amplification

[Smith84] – Plants, Fractals and Formal Languages

> SIGGRAPH paper which coined the term database amplification

> Discussion of plant and mountain growth using L-systems and
particle systems

> Two exciting properties:
1. Database amplification – Complex images from small datasets

> If you can generate it, an artist doesn’t have to build it

> Consoles and PCs have limited memory relative to processing power

> Network bandwidth is limited. Would be nice to “grow” data from seeds sent
across the wire. Has LOD opportunities built right in.

2. Emergence – Complex appearance from simple rules
> Can generate more variety and volume than an artist could ever build

5Data Amplification

From [Dube05]

Procedural Textures
> Combine signals at different

frequencies to make more stuff

> Examples
> Clouds

> Hybrid procedural and
authored approaches

> Wang tiles

> Flow-bases synthesis

> Fourier-domain water
synthesis

6Data Amplification

Hybrid procedural approaches
> In a recent Game Developer Magazine article, Sean

Barrett discusses Hybrid Procedural Textures
> Find a middle ground between sampling and

synthesis

> You may already be doing something like this with
detail textures

7Data Amplification

[Cohen03] Wang Tiles

> Set of square texture maps which can be used
to tile a surface

http://research.microsoft.com/~cohen/WangFinal.pdf
http://research.microsoft.com/~cohen/WangFinal.pdf

8Data Amplification

[Bhat04] Flow-based Video Synthesis and Editing
> Analyze real-world video

> Use a particle model to synthesize video/texture
of continuous flow

> Could also think of this as a kind of compression

> Could integrate naturally into many 3D scenes

http://graphics.cs.cmu.edu/projects/flow/
http://graphics.cs.cmu.edu/projects/flow/

9Data Amplification

0
Texture Arrays
> New type of texture construct coming in the

future

> These are not volume textures

> Mip-mapping is different

> Pixel shader sampling instruction specifies
texture coordinates and array index in argument

1

…

n

10Data Amplification

Fluid Navier-Stokes equations
> It is now possible to do 2D fluid

simulations on GPUs

> Can be useful for generating
decorative smoke wisps

11Data Amplification

Integration into scene
> Obviously, this doesn’t have to be

physically accurate, just plausible

> Once you have the implementation and the
GPU cycles to burn, you can drop this sort
of thing in anywhere

12Data Amplification

Geometry Amplification
> It’s easy to play games with textures using pixel shaders, but how do

we amplify our geometry?

> Synthesis
> Make more!

> Instancing
> Reuse the data in interesting ways which hide the replication

13Data Amplification

Geometry synthesis
> Textures are easy to generate using pixel shaders as image processing

kernels, but we want to process geometry too

> For certain 1:1 or many:1 operations, GPU-based geometry processing
and generation is real

> Really it has been around a while, but the APIs are in the way

> Want to synthesize data on demand rather than store a lot of it
> This includes geometry!

14Data Amplification

On-demand Synthesis of Water
> Storing lots of precomputed water animation takes up lots of memory

> Would be nice if it could be generated on demand

> Computing water animation via realistic simulation in real-time is
expensive

> It just has to be plausible

> Simply scrolling noise can look OK, but we want to do better
> We’ve done scrolling noise in the past, but we can do better

15Data Amplification

Two Classes of Approach
> Spatial domain

> Compute superposition of a finite set of waveforms directly

> Can be sinusoids or trochoids or something more arbitrary

> Fourier domain
> Synthesize and animate spectrum of ocean water

> Take IFFT to get height and normal maps

16Data Amplification

[Mastin87] Fourier Synthesis of Ocean Scenes
> Transformed white noise to the Fourier domain and then filtered it using a spectrum which resembles ocean

water
> Used the Pierson-Moskowitz spectrum which was derived from real ocean wave measurements
> Relates wind speed to spectrum of sea

> Inverse FFT of the filtered result produces a tileable height map which resembles ocean waves
> Can portray wave motion by manipulating the phase

Frequency Domain Spatial Domain

*

White
Noise

Pierson-
Moskowitz
Spectrum FFT

Water
HeightIFFT

17Data Amplification

[Tessendorf99] Simulating Ocean Water
> Did water for Waterworld, Titanic and

many others
> Works with sums of sinusoids but starts in

Fourier domain
> Can evaluate at any time t without having

to evaluate other times
> Uses the Phillips Spectrum and describes

how to tune it to get desired looks
> Roughness of the sea as a function of wind speed
> Directional dependence to simulate waves

approaching shore

18Data Amplification

[Jensen01] Deep-Water Animation and Rendering

> Adopted many techniques from Tessendorf,
all in real time

> Used low frequencies to displace geometry
and high frequencies in a normal map

> First attempt at Fourier synthesis of ocean
water in real time, but IFFT was done on the
CPU

> Also played with all sorts of other things like
foam, spray, caustics and godrays

19Data Amplification

FFT on the GPU
> A couple of different GPU-based FFT implementations have been

developed in the last few years
> Some colleagues and I published an implementation of Cooley and Tukey’s

“Decimation in Time” algorithm, which we published in an image processing
chapter in ShaderX2 [Cooley65] [Mitchell03] .

> [Moreland03] also published a paper on doing the FFT on a GPU

http://www.ph.utexas.edu/~itiq/chiu/cooley/
http://www.ph.utexas.edu/~itiq/chiu/cooley/
http://www.ati.com/developer/shaderx/ShaderX2_AdvancedImageProcessing.pdf
http://www.ati.com/developer/shaderx/ShaderX2_AdvancedImageProcessing.pdf
http://www.cs.unm.edu/~kmorel/documents/fftgpu/
http://www.cs.unm.edu/~kmorel/documents/fftgpu/

20Data Amplification

Migrate it all to the GPU
> If we can now do an FFT on the GPU, let’s do everything on the GPU

> The algorithm:
1. Load initial frequency data to static textures

2. For each frame
a. Generate Fourier spectrum at time t

b. Do IFFT to transform to spatial domain height field

c. Filter height field to generate normal map

d. Cast height field to vertex buffer to use as displacement stream

e. Render mesh tiles using displacement stream and normal map to shade

21Data Amplification

Synthesized Water
> Apply synthesized height field

to vertices and displace
vertically

> Filter to create a normal map
for shading

22Data Amplification

Resulting renderingResulting rendering

Additional waveforms
> Easy to composite wake, eddies, simulation etc

> Precomputed waveforms or real-time
simulation like the Navier-Stokes simulation
demonstrated earlier

> Then filter to get normals for shading

Height + wakeHeight + wake NormalsNormals

23Data Amplification

Single-band approach

0
~h *

0
~h

ω̂

time

Static
Textures

Normals

Normal
Map()txh ,r

Frequency Domain Spatial Domain

()tkh ,~
r

IFFT

Displacements

24Data Amplification

Dual-band approach

0
~h *

0
~h

()txh ,r

ω̂

Frequency Domain Spatial Domain

Low
 Band

()tkh ,~ r Normal
Map

time IFFT

Displacements

0
~h *

0
~h Normals

Normal
Map

B
road band

()txh ,r

ω̂

()tkh ,~ rtime IFFT

25Data Amplification

Depth effects
> Shallow areas or foliage can damp out high frequencies

> Simply blend between broad and low band maps to
approximate the look

Low BandLow Band Broad BandBroad Band Depth / Foliage DampingDepth / Foliage Damping

26Data Amplification

Figure from Stam

Caustics
> Patterns caused by convergence of

refracted or reflected light

> Important visual cue in certain scales of
water rendering

> Refracted caustics in swimming pool or
other shallow water

> Reflected caustics on boat hull

Reflected Caustics

27Data Amplification

Interaction
> If the GPU does the amplification, what does this do to our interactions

with the world, which are simulated on the CPU?
> Multi-resolution synthesis (low resolution on CPU for gross collision

interaction & high resolution on GPU for rendering)

28Data Amplification

Normal MapNormal Map PositionsPositions

[Gu02] Geometry Images
> Reparametrize mesh into square grid

> Since neighbors are implicit, it’s easy
to process in this space using image
processing concepts

> Reconstruct processed geometric
model

29Data Amplification

[Reeves85] Approximate and Probabilistic Algorithms for Shading and
Rendering Structured Particle Systems

The Adventures of Andre and Wally B The Adventures of Andre and Wally B

> Topology procedurally generated, with
properties tuned to resemble known tree
species

> Pixar used a structured particle system
approach to rendering foliage in The
Adventures of Andre and Wally B

> Up to 3000x data amplification
> Polygonal trunk / branches
> One particle system per tree

> Circles and Lines
> Simple procedural shading, taking into

account depth into the tree and gross
occlusion by neighboring tree bounds

http://www.pixar.com/shorts/awb/theater/short_320.html
http://www.pixar.com/shorts/awb/theater/short_320.html
http://www.pixar.com/shorts/awb/theater/short_320.html
http://www.pixar.com/shorts/awb/theater/short_320.html

30Data Amplification

Particle Systems
> In [Kipfer04], the authors use the GPU to

implement a particle engine they call Uberflow

> Particle-Particle and Particle-Scene collisions

> Can sort back to front

> Measure the following perf in frames per second:

0.41.474212010242

2831963205122

7391331556402562

CPU
sorting, no
collisions

Sorting,
but no

collisions

Particle-
Particle

collisions

Collisions
with height

field

No
collisions

http://wwwcg.in.tum.de/Research/Publications/UberFLOW

31Data Amplification

Instancing and Variation
> Want to use a single source model at

multiple physical locations in an
environment

> The best way to handle groups of
similar things

> Foliage, crowds

> Ideally done with one API call and no
data replication

> Direct3D has recently added an
instancing capability

> Use shaders to generate uniqueness
across instances with spatially varying
parameters

Copyright 2001 PDI/DreamworksCopyright 2001 PDI/Dreamworks

32Data Amplification

Instancing in Practice
> New API in Direct3D

> Store per-instance data in a separate data stream

> Draw multiple instances in one shot

> Example from Far Cry, for a representative forest scene:
> Approximately 24 kinds of vegetation

> 4 types of grass (45 to 120 polygons per instance)

> 12 types of bushes (100 to 224 polygons per instance)

> 8 types of trees (500 to 1600 polygons per instance)

> Instancing on some scenes is very efficient. Number of draw-calls
(including other non-instanced objects) is reduced from 2500 to 430

> Far Cry doesn’t seem to do much sorting of foliage, which is one reason
this works

33Data Amplification

Hundreds of instanced characters

34Data Amplification

Unique seeds for instanced shading

35Data Amplification

0
Texture Arrays for Instancing
> Useful for providing unique look to instanced

objects
> Index into an array of textures based upon

some “state” stored with each instance (like
color seeds on previous slide)

> Same “state” can be used to drive flow control
as well

> Like being able to change texture handles mid
draw call

1

…

n

36Data Amplification

Procedural Environments
> 2D games have done this for years

> The demoscene does a ton of this

> Some games are now extending to 3D:
> Author time

> Run time
> Grafan

37Data Amplification

.kkrieger by .theprodukkt.kkrieger by .theprodukkt

Demoscene
> To fit into 64kb or 96kb, the

demoscene guys are doing a
lot of procedural generation

> The 96kb game winner at
Breakpoint 2004 (.kkrieger by
.theprodukkt) uses a lot of
procedural generation and they
have even posted their tools
online

.kkrieger by .theprodukkt.kkrieger by .theprodukkt

http://breakpoint.untergrund.net/
http://breakpoint.untergrund.net/
http://www.theprodukkt.com/kkrieger.html
http://www.theprodukkt.com/kkrieger.html
http://www.theprodukkt.com/kkrieger.html
http://www.theprodukkt.com/kkrieger.html

38Data Amplification

Grafan from Emogence
> Environments are procedurally

generated on-the-fly as a user
traverses the game world

> Objects and entities are placed
procedurally as the game world is
built

> Assets like textures, objects, and
entities are authored by artists

> Computation replaces bandwidth

39Data Amplification

Related areas
> Higher Order Surfaces

> This is a massive topic that we don’t have time for here, but…

> Plants

> Terrain

40Data Amplification

Summary
> Textures

> Compositing signals and noise, clouds
> Hybrid textures
> Wang Tiles
> Flow-based synthesis

> Geometry Synthesis
> Ocean Water
> Particle systems

> Instancing
> Drawing Crowds

> Other areas
> Plants
> Procedural cities
> Higher order surfaces

> Existence proofs
> Grafan (others in development)

41Data Amplification

References
> [Barrett04] Sean Barrett, “Hybrid Procedural Textures,” Game Developer Magazine, October 2004
> [Bhat04] Kiran S. Bhat, Steven M. Seitz, Jessica K. Hodgins and Pradeep K. Khosla, “Flow-based Video Synthesis and Editing,”

SIGGRAPH 2004.
> [Cohen03] Michael F. Cohen, Jonathan Shade, Stefan Hiller and Oliver Deussen, “Wang Tiles for Image and Texture Generation,”

SIGGRAPH 2003, July, 2003
> [Cooley65] James W. Cooley and John W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series.” Math.

Comput. 19, 297-301, 1965.
> [Dube05] Jean-François Dubé, “Realistic Cloud Rendering on Modern GPUs” in Game Programming Gems 5, Charles River Media

2005
> [Ebert03] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin and Steven Worley, Texturing and Modeling: A

Procedural Approach, Morgan Kaufmann 2003.
> [Gosselin04] David Gosselin, Pedro V. Sander and Jason L. Mitchell, "Drawing a Crowd" in ShaderX3, Charles River Media, 2004.
> [Gu02] Geometry Images
> [Jensen01] Lasse Staff Jensen and Robert Goliáš, “Deep-Water Animation and Rendering,” Game Developers Conference Europe,

2001. http://www.gamasutra.com/gdce/2001/jensen/jensen_01.htm
> [Kipfer04] Peter Kipfer, Mark Segal and Rüdiger Westermann , “UberFlow: A GPU-Based Particle Engine,” Graphics Hardware 2004
> [Mastin87] Gary A. Mastin, Peter A. Watterger, and John F. Mareda, “Fourier Synthesis of Ocean Scenes,” IEEE Computer Graphics

and Applications, March 1987, p. 16-23.
> [Mitchell03] Jason L. Mitchell, Marwan Y. Ansari and Evan Hart, “Advanced Image Processing with DirectX 9 Pixel Shaders” in

ShaderX 2 - Shader Tips and Tricks, Wolfgang Engel editor, Wordware, Sept. 2003.
> [Moreland03] Kenneth Moreland and Edward Angel, “The FFT on a GPU,” SIGGRAPH/Eurographics Workshop on Graphics Hardware

2003 Proceedings, pp. 112–119, July 2003.
> [Perlin85] Ken Perlin, “An Image Synthesizer,” SIGGRAPH 1985.
> [Tessendorf99] Jerry Tessendorf, “Simulating Ocean Water,” Simulating Nature: Realistic and Interactive Techniques Course

Notes, SIGGRAPH 1999.

http://graphics.cs.cmu.edu/projects/flow/
http://graphics.cs.cmu.edu/projects/flow/
http://research.microsoft.com/~cohen/WangFinal.pdf
http://research.microsoft.com/~cohen/WangFinal.pdf
http://www.ph.utexas.edu/~itiq/chiu/cooley/
http://www.texturingandmodeling.com/
http://www.ati.com/developer/shaderx/ShaderX3_DrawingACrowd.pdf
http://www.gamasutra.com/gdce/2001/jensen/jensen_01.htm
http://www.gamasutra.com/gdce/2001/jensen/jensen_01.htm
http://wwwcg.in.tum.de/Research/Publications/UberFLOW
http://www.ati.com/developer/shaderx/ShaderX2_AdvancedImageProcessing.pdf
http://portal.acm.org/citation.cfm?id=325247
http://terra.cs.nps.navy.mil/DistanceEducation/online.siggraph.org/2001/Courses/cd2/courses/47/47cdrom.pdf

	Data Amplification
	Overview
	Motivation
	[Smith84] – Plants, Fractals and Formal Languages
	Procedural Textures
	Hybrid procedural approaches
	[Cohen03] Wang Tiles
	[Bhat04] Flow-based Video Synthesis and Editing
	Texture Arrays
	Fluid Navier-Stokes equations
	Integration into scene
	Geometry Amplification
	Geometry synthesis
	On-demand Synthesis of Water
	Two Classes of Approach
	[Mastin87] Fourier Synthesis of Ocean Scenes
	[Tessendorf99] Simulating Ocean Water
	[Jensen01] Deep-Water Animation and Rendering
	FFT on the GPU
	Migrate it all to the GPU
	Synthesized Water
	Additional waveforms
	Single-band approach
	Dual-band approach
	Depth effects
	Caustics
	Interaction
	[Gu02] Geometry Images
	[Reeves85] Approximate and Probabilistic Algorithms for Shading and Rendering Structured Particle Systems
	Particle Systems
	Instancing and Variation
	Instancing in Practice
	Hundreds of instanced characters
	Unique seeds for instanced shading
	Texture Arrays for Instancing
	Procedural Environments
	Demoscene
	Grafan from Emogence
	Related areas
	Summary
	References

