
Next Generation Skin
Rendering
Next Generation Skin
Rendering

John Isidoro
Chris Oat

Jason Mitchell
ATI Research

2004

2Next Generation Skin Rendering

Overview

• Review
• Lighting Models
• Subsurface scattering

– Texture Space Lighting
– PRT
– Irradiance Gradients
– Zonal Harmonics

• Conclusion

3Next Generation Skin Rendering

Why Skin is Hard

• Most lighting from skin comes from
sub-surface scattering

• Skin color mainly from epidermis
• Pink/red color mainly from blood in

dermis
• Lambertian model designed for “hard”

surfaces with little sub-surface scattering
so it doesn’t work real well for skin

4Next Generation Skin Rendering

Rough Skin Cross Section

Air

Epidermis

Dermis

Bone, muscle, guts, etc.

5Next Generation Skin Rendering

Basis for Our Approach

• SIGGRAPH 2003 sketch Realistic
Human Face Rendering for “The
Matrix Reloaded”

• Rendered a 2D light map
• Simulate subsurface diffusion in image

domain (different for each color
component)

• Used traditional ray tracing for areas
where light can pass all the way through
(e.g.. Ears)

6Next Generation Skin Rendering

Texture Space Subsurface Scattering

• From Realistic
Human Face
Rendering for
“The Matrix
Reloaded” @
SIGGRAPH 2003

• From Sushi
Engine

Current skin in Real Time

7Next Generation Skin Rendering

Real Time Texture Space Lighting

• Render diffuse lighting into an off-screen
texture using texture coordinates as
position

• Blur the off-screen diffuse lighting
• Read the texture back and add specular

lighting in subsequent pass
• We only used bump map for the specular

lighting pass

8Next Generation Skin Rendering

Standard lighting model

9Next Generation Skin Rendering

Blurred lighting model

10Next Generation Skin Rendering

Texture Coordinates as Position

• Need to light as a 3D model
but draw into texture

• By passing texture
coordinates as “position” the
rasterizer does the unwrap

• Compute light vectors based
on 3D position and interpolate

11Next Generation Skin Rendering

Basic Approach

Light in
Texture Space Blur

Geometry

Sample texture space light

Back
Buffer

12Next Generation Skin Rendering

Blur

• Used to simulate the subsurface
component of skin lighting

• Used a grow-able Poisson disc filter
(more details on this filter later)

• Read the kernel size from a texture
• Allows varying the subsurface effect

– Higher for places like ears/nose
– Lower for places like cheeks

13Next Generation Skin Rendering

Blur Size Map and
Blurred Lit Texture

Blur Kernel SizeBlur Kernel Size Texture Space Texture Space
LightingLighting

ResultResult

14Next Generation Skin Rendering

Shadows

• Use shadow maps
– Apply shadows during texture lighting
– Get “free” blur

• Soft shadows
• Simulates subsurface interaction
• Lower precision/size requirements
• Reduces artifacts

• Only doing shadows from one key light

15Next Generation Skin Rendering

Shadow Maps

• Create projection matrix to generate map
from the light’s point of view

• Use bounding sphere of head to ensure
the most texture space is used

• Write depth from light into off-screen
texture

• Test depth values in pixel shader

16Next Generation Skin Rendering

Texture Lighting With Shadows

Geometry

Light in
Texture Space Blur

Sample texture space light

Write distance from light
into shadow map

Back
Buffer

17Next Generation Skin Rendering

Shadow Map and
Shadowed Lit Texture

Shadow Map Shadow Map
(depth)

Shadows in Texture Shadows in Texture
Space(depth) Space

18Next Generation Skin Rendering

Result with ShadowsResult with Shadows

19Next Generation Skin Rendering

Using Early-Z for Culling
• Testing z-buffer prior to pixel shader execution

– Can cull expensive pixel shaders
– Only applicable when pixel shader does not output

depth
• This texture-space operation doesn’t need the z buffer for

hidden surface removal
• Can store any value of Z buffer
• Use Early-Z to cull computations

– Back face culling
– Distance and frustum culling

• Set z buffer on lighting pass according to frustum, distance from
viewer, and facing-ness of polygons

• Set the z test such that non-visible polygons fail Z test
• Reduces cost of image-space blurs in regions that don’t need it

20Next Generation Skin Rendering

Back Face Culling

Over the shoulder view of Ruby

Back facing pixels
culled using early-z

21Next Generation Skin Rendering

22Next Generation Skin Rendering

Ruby2 Overview
• Overview of PRT lighting

– Allows for sub-surface scattering, and global illumination
effects.

• Irradiance volumes
– Allows for changing incident lighting as Ruby moves through

the tunnel.

• Irradiance gradients
– Allow for variation in the incident radiance over the Ruby’s

extent in the scene

• Combining PRT lighting with standard rendering
techniques in Ruby2

• Combining Ruby1 and Ruby2 style lighting
• Zonal Harmonics

– Integrating this with skinning and morphing techniques.

23Next Generation Skin Rendering

The Rendering Equation

iiiA ooiiiiiooo xnxxSxLxL ∂∂⋅= ∫ ∫ ωωωωωω
π

rrrrrrr)(),,,(),(),(
2

BSSRDF: bidirectional
subsurface scattering
distribution function.

Hemisphere
Cosine
Term

Incident
Light
Intensity

Outgoing
Light
Intensity

= **

• To compute the outgoing light intensity for a point on the
surface and outgoing direction…

• We compute an integral over the incident light from all
directions ωi for each point on the surface xi.

• Of course, storing the full 8-dimensional BSSRDF is
very expensive, so we make a few simplifying
assumptions….

24Next Generation Skin Rendering

),,,(ooii xxS ωω
rr

About the BSSRDF

ωi ωo
xoxi

Incident Radiance Outgoing Radiance

• Describes how light incident on the surface become reflected, refracted
and scattered into outgoing light for all directions and points on the
surface.

• Takes into account the effects of visibility, surface normals, indices of
refraction, reflective properties, and light transport within the material.

• Allows for global illumination effects, and subsurface scattering.

25Next Generation Skin Rendering

Simplification of the BSSRDF for PRT

• This results in a simplified rendering equation:
– Note that the integral is only over the direction of the incident

lighting

iiiiioiPRTDiffuseoo LnxSxL ωωωω
π

rrrr
∂⋅= ∫2)())(,()(

),,,(ooii xxS ωω
rr

),(oiPRTDiffuse xS ω
r

• Light sources are assumed to be far from the
object, so incident radiance is approximated
as solely a function of direction.

• Outgoing light is assumed to
be diffuse, so no directional
component is needed.

26Next Generation Skin Rendering

SH Basis
First order term

Second order terms

Third order terms

< C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, … Cn >

• Allows you to represent functions on the spherical domain.
• Series is infinite

– Choose a range that fits our storage and approximation needs
– (6th order for skin / 4th order for other stuff)
– Each function in the truncated series is assigned to an element in a vector.

• Each element stores its associated SH function’s contribution
to the overall signal (basis weight)

– Building your original (arbitrary) spherical signal out of a fixed set of scaled,
predefined spherical signals

– The larger the “fixed set” the closer the approximation will be

27Next Generation Skin Rendering

PRT lighting

iiiiioiPRTDiffuseoo LnxSxL ωωωω
π

rrrr
∂⋅= ∫2)())(,()(

)(),()(sLxsTxL iooo ⋅=

iiioioo LxTxL ωωω
π

rrr
∂= ∫2)(),()(

• The simplified BSSRDF and hemisphere cosine terms are
combined into a transfer vector, and represented in the SH basis
per-vertex (or per-pixel).

• The incident light (think environment map) is also represented in
the SH basis.

• Integrating over all incident light directions can now be computed
as a series of dot products. (Shader friendly!)

28Next Generation Skin Rendering

Example Shader for PRT lighting

//---
// HLSL code snippet for computing the PRT lighting integral via a sum of
// dot products
//---
for (int index = 0; index < (numSHCoeff/4); index++)
{

o.cRadiance.r +=
dot(i.vSHTransferCoef[index], g_vIrradianceSampleRedOS[index]);

o.cRadiance.g +=
dot(i.vSHTransferCoef[index], g_vIrradianceSampleGreenOS[index]);

o.cRadiance.b +=
dot(i.vSHTransferCoef[index], g_vIrradianceSampleBlueOS[index]);

}

29Next Generation Skin Rendering

Clustered PCA for PRT
• 6th order color PRT takes 108 coefficients

– Too much data to store per-vertex or per-pixel
– However, for most materials the PRT functions only span a small

subset of the 108 dimensional vector space in a non-negligible way.
• Perform clustered PCA on the PRT data.

– Derive a collection of representative transfer SH coeff. vectors that
span the dominant portions of the subspace.

• Generally between 4-24 PCA vectors (per cluster).

– Store per-vertex (or per-pixel) weights to represent its own transfer
vector as a weighted average of these vectors.

• 4-24 weights per vertex (plus a cluster index)

– Light the PCA vectors on the CPU using the incident radiance
and pass the resulting colors into the shader constants.

– In the vertex shader, compute a weighted average.
• CPCA acts as a form of lossy compression for PRT, but generally

results in little loss in visual quality.

30Next Generation Skin Rendering

Case study: Ruby2

• Now we will show some methods to extend PRT
techniques for motion though a complex lighting
environment.

31Next Generation Skin Rendering

Ruby2 Improvements

• Canonical pose lighting
• Irradiance Volumes

– Allows for changing irradiance throughout
the scene.

• Irradiance Gradients
– Allows for varying irradiance over a model.

• Integration with various material shaders.

32Next Generation Skin Rendering

Computing PRT for a Canonical Pose

• In Ruby2 does not have a great deal of articulated motion, so pre-
computing per-vertex PRT for the model for a single a canonical
pose worked well enough.

– The pose was chosen to minimize any shadowing effects that could
change over the course of the demo.

– PRT is mostly for ambient occlusion + sub-surface scattering effects
• Assumes no huge changes in occlusion/visibility.

33Next Generation Skin Rendering

Incident lighting rotation

Lighting from above in world
space, but Ruby is sideways

on her bike.

Perform lighting in object space by
rotating the world space incident

lighting into canonical object space.
• Ruby + bike varies with respect to the tunnel, the WS incident

lighting is rotated into object space of Ruby’s canonical reference
frame on the CPU.

34Next Generation Skin Rendering

Spatially varying illumination
throughout the scene.

• A limitation of PRT based lighting in its basic form is
that the light sources are assumed to be at infinity.

– single lighting environment (irradiance sample) per scene.

• What can we do to get around this limitation?

35Next Generation Skin Rendering

Irradiance Volumes [Greger98]

• A grid of irradiance samples taken throughout
the scene

• For a point in the scene, the irradiance can be
computed by tri-linear interpolation of the
sampled irradiance within the scene.

36Next Generation Skin Rendering

Generating Irradiance volumes

• Sample irradiance by rendering lit scene and
light emitters into a cube map at each point.

– For SH based PRT lighting the SH coefficients
are generated from the cube map.

– Best performed at preprocess time
• Spacing between samples depends on detail

in scene, and size of objects

37Next Generation Skin Rendering

Irradiance samples along a path

• In Ruby2, since the motion is constrained to the inside of a
tunnel, thousands of irradiance samples are taken along the
path her bike follows in the scene..

– Also may be applicable to racing games..

38Next Generation Skin Rendering

Irradiance Gradients: Motivation

Without Irradiance Gradients

With Irradiance Gradients

If irradiance varies greatly over an object due to nearby light
sources, another possibility is to store irradiance gradients along
with each irradiance sample. [Ward 92][Annen04]

39Next Generation Skin Rendering

Sampling for Irradiance Gradients

• For Ruby2 in preprocess we compute spatial derivatives in x, y,
and z using finite differences.

– Samples are placed at the center of each face of the world space
bounding box of the object.

• Irradiance is computed for 6 different offsets and derivatives are
computed using these offsets.

• At runtime, irradiance and its gradients are rotated into object
space for each object being rendered.

40Next Generation Skin Rendering

Irradiance Gradient Examples

Using irradiance gradients
to vary the intensity over
the length of the bike.

Using the same irradiance over
the length of the bike…

• Notice the variation in intensity over the length of
the bike when using irradiance gradients.

41Next Generation Skin Rendering

Implementation Details
• Only the grayscale PRT coefficients are stored per

vertex.
– 6th order: 36 coefficients (9 float4 vectors)

• Color irradiance and irradiance gradients are stored in
the vertex constant store.

– (6th order: 36 coefficients * 3 channels * (1+3 gradients))
– 27 vs constants (float4) for irradiance.
– +81 vs constants for irradiance gradients.

• In the vertex shader..
– First the point’s irradiance is computed using the positional

offset, center position’s irradiance, and its gradients.
– Then the PRT lighting integral is computed using dot

products.

42Next Generation Skin Rendering

Using PRT lighting with other shaders

• PRT gives us diffuse and ambient lighting terms, but we would
like to integrate these terms into more complex shaders…

43Next Generation Skin Rendering

Other information encoded in the SH
basis for PRT

• 1st term in SH PRT basis acts as an
ambient occlusion term

– e.g. what percentage of the outside scene is
visible from a particular point)

• Next 3 terms (2nd order) acts as a bent
normal (aka shading normal)

– e.g. what is the dominant direction of the
visibility function for the point on the model)

44Next Generation Skin Rendering

Example: Skin
Just PRT lighting w/ albedo color + albedo maps and bump

mapped specular

• CPCA based
– Uses color transfer vectors for reddening near thin regions.

• Modulate with albedo map
• Attenuate additive bump-mapped specular with ambient occlusion

term.

45Next Generation Skin Rendering

Example: Bike paint shader

• Albedo map is modulated by PRT diffuse term
• Sparkle map: (high frequency bump map uses (N.V)^k)
• Specular lighting can be computed via dynamic cube maps and

added.
• Specular is modulated with ambient occlusion (1st SH coeff. In

PRT)
– Reflections attenuated in occluded regions.

46Next Generation Skin Rendering

New Advances

• Some results on combining PRT and
standard lighting:

• Scattering in different wavelengths
• PRT for subsurface scattering term
• Zonal harmonics

47Next Generation Skin Rendering

How to Combine Techniques from
Ruby1 & Ruby2
• Two Skin rendering approaches

– Texture space lighting (Ruby 1)
• Controls lighting from a single light source
• High frequency variations in the lighting
• Light source is generally nearby
• Independent of material, and lighting model, and animation

technique.
• Shadow blur technique seens in previous section

– Enhanced PRT based lighting (Ruby 2)
• Can be used to get effects such as light shining through the

ears, and nostrils.
• Can model the effects of sub-surface scattering
• Light sources assumed to be at infinity
• Low frequency variations in lighting
• Pre-process step
• Animation unfriendly in basic form.

48Next Generation Skin Rendering

Blurring visibility

• Use shadow mapping to determine shadowed regions in light
space

• Lightmap space blurring of visibility rather than lighting.
– Each light uses one channel of a visibility map

Visibility in light map space for 1 light Blurring for sub-surface scattering
effect

49Next Generation Skin Rendering

Blurring visibility

• Seen as each light uses one channel of a visibility map:
• We can blur shadows from four lights at a time if using

an .rgba texture.

Visibility in light map space for 3 lights Blurring for sub-surface scattering
effect

50Next Generation Skin Rendering

Spectral Scattering LUT
Without LUT With Spectral LUT

• Spectral scattering approach, 1D color LUT applied to
blurred visibility edges to mimic effects of red light
scattering in skin more than green light and blue light.

51Next Generation Skin Rendering

1D LUTs for Spectral Scattering
No Spectral ScatteringNo Spectral ScatteringNo Spectral Scattering Slight Spectral ScatteringSlight Spectral ScatteringSlight Spectral Scattering

Moderate Spectral ScatteringModerate Spectral ScatteringModerate Spectral Scattering Heavy Spectral ScatteringHeavy Spectral ScatteringHeavy Spectral Scattering

52Next Generation Skin Rendering

How to incorporate PRT lighting??

PRT only: Light from behindPRT only: Light from below

• We would like to apply the subsurface scattering effects
using PRT to our shadow mapped lighting.

• Key idea: subtract direct illumination from PRT lighting,
and add result to Ruby1 style shadow mapped lighting.

53Next Generation Skin Rendering

Indirect PRT lighting

• Break incident light into per-light SH coefficients.
– E.g. Multi-light PRT shaders

• Subtraction of f(N · L) term from PRT lighting per light.
– Attenuates light shining directly onto surface

• Use per-light rim lighting term g(-V · L) to accentuate light bleeding
through thin surfaces (backlighting).

– In rim-lighting configuration, use PRT lighting as is for indirect lighting.

PRT only: Light from leftPRT only: Light from leftPRT only: Light from left Indirect component of lightIndirect component of lightIndirect component of light

54Next Generation Skin Rendering

Direct and Indirect Illumination

• How can we combine the two:
– Use shadow mapping with standard lighting to account

for "direct" illumination
– Use PRT based lighting to account for “indirect lighting”

(subsurface scattered light)

Direct Shadow Mapped
Lighting

Indirect PRT Based
Lighting

55Next Generation Skin Rendering

Direct+Indirect Lighting Terms

Combined Direct and IndirectCombined Direct and IndirectCombined Direct and IndirectDirect only: Light from leftDirect only: Light from leftDirect only: Light from left

56Next Generation Skin Rendering

Allowing a greater deal of
articulation..

• If a greater degree of articulation is required..
– One of the difficulties with using the SH coefficient based PRT,

is rotating them in an efficient way.
• Note that the basis functions for SH within each band are not just rotations of

one another.

– Possible to rotate lighting for each bone for skinning, but the
results not easily fit in the VS or PS constant store.

– For morphing one could imagine having different PRT for each
morph target

• But this would take additional vertex shader inputs, and limit the number of
simultanously applied morph targets..

• Incident lighting and transfer vector need to be applied in
the same coordinate system for SH PRT to be efficient…

57Next Generation Skin Rendering

Zonal Harmonics (ZH)
• Zonal harmonics: instead uses rotateable shading

normal and per-band coefficients for transfer.
– Coefficients control the shape of the BSSRDF lobe around

that normal.
– Same weight for all coefficients within a band.
– Amplitude information is still there, but phase information

encoded in the within band coefficients is replaced with a
shading normal.

– Per-vertex or Per-pixel
– Can be computed from the SH transfer vector using D3D

PRT tools function (CompConvCoefficients).
• Can rotate shading normal, this does not change

the shape of the lobe about the normal.
• Approximation somewhere between diffuse SH

irradiance lookup (equal per-band weights), and
PRT using SH representation.

58Next Generation Skin Rendering

Shading Normals vs Surface Normals

Surface Normals Shading Normals

• Notice how the shading normals vary less over the
surface than the surface normals

– Contributes to the overall “softness” of the appearance of the
skin.

– The variation of the shading normals over the surface is
material dependant.

59Next Generation Skin Rendering

Zonal Harmonic Coefficients

ZH Coeff Band2 ZH Coeff Band0 ZH Coeff Band1
• Think of each band of the incident lighting as a band pass filtered

version of the incident lighting.
• The zonal harmonics coefficents control the shape of the lobe

about the shading normal used to sample the irradiance.
• For the skin material, the contribution of each band of the zonal

harmonics decreases as frequency increases.
– Analogous to a low pass filtering of the incident light.
– Contributes to the smooth diffuse appearance of the material.
– Intuitively, Band0 acts as an ambient occlusion term, and Band1

scales the contribution of the shading (bent normal).
– For the skin material only the first 3 ZH bands were needed.

60Next Generation Skin Rendering

Example Shader for ZH PRT
//---
// Constants for Linear + constant polynomials
// g_vCartSHConstB12 = {
// 1/(2*sqrt(pi)), -sqrt(3)/(2*sqrt(pi)), sqrt(3)/(2*sqrt(pi)), -sqrt(3)/(2*sqrt(pi)) }
// Constants for the quadratic polynomials
// g_vCartSHConstB3 = {
// sqrt(15)/(2*sqrt(pi)), -sqrt(15)/(2*sqrt(pi)), sqrt(5)/(4*sqrt(pi)), sqrt(15)/(4*sqrt(pi)) }
//---
float4 ComputeZonalCartesianPRTDiffuse(int aLightIdx, float3 oSNorm, float3 vZHCoeff[NUM_ZH_COEFF])
{

float3 Band_12, Band3, Band3_Final;
float4 sNormB12, sNormB3, cRadiance = 0;

// Linear + Constant Polynomials
sNormB12 = float4(1, oSNorm.yzx) * g_vCartSHConstB12;
Band_12.r = dot(g_vSHLightRed[aLightIdx][0], sNormB12 * float4(vZHCoeff[0].r, vZHCoeff[1].rrr));
Band_12.g = dot(g_vSHLightGreen[aLightIdx][0], sNormB12 * float4(vZHCoeff[0].g, vZHCoeff[1].ggg));
Band_12.b = dot(g_vSHLightBlue[aLightIdx][0], sNormB12 * float4(vZHCoeff[0].b, vZHCoeff[1].bbb));
cRadiance.rgb += Band_12;

// First 4 Quadratic Polynomials
sNormB3 = oSNorm.xyzz * oSNorm.yzzx;
sNormB3.z = (3.0 * sNormB3.z) - 1.0;
sNormB3 *= g_vCartSHConstB3.xyzy;
Band3.r = dot(g_vSHLightRed[aLightIdx][1], sNormB3);
Band3.g = dot(g_vSHLightGreen[aLightIdx][1], sNormB3);
Band3.b = dot(g_vSHLightBlue[aLightIdx][1], sNormB3);
cRadiance.rgb += Band3 * vZHCoeff[2];

// Final Quadratic Polynomial
Band3_Final.rgb = (oSNorm.x * oSNorm.x) - (oSNorm.y * oSNorm.y);
Band3_Final.rgb *= g_vCartSHConstB3.w;
Band3_Final.rgb *= vZHCoeff[2];
cRadiance.r += g_vSHLightRed[aLightIdx][2].x * Band3_Final.r;
cRadiance.g += g_vSHLightGreen[aLightIdx][2].x * Band3_Final.g;
cRadiance.b += g_vSHLightBlue[aLightIdx][2].x * Band3_Final.b;

return cRadiance * g_vMaterialDiffuseColor;
}

• About 23 shader instructions for 3rd order ZH PRT.
– Can replace per-band SH evaluation of irradiance with a cube map

look up for higher order bands.

Bands 0 and 1

Band 2

61Next Generation Skin Rendering

Results Using ZH vs SH

SH based (CPCA) PRT Lighting ZH based PRT Lighting

• For the skin material the ZH results are very similar to
straightforward SH based PRT.

– In general using zonal harmonics causes a slight loss in some
of the directionally dependant hue shifting due to sub-surface
scattering and diffuse interreflections.

62Next Generation Skin Rendering

References
• [Borshukov03] George Borshukov and J.P. Lewis, “Realistic

Human Face Rendering for The Matrix Reloaded,”
Technical Sketches, SIGGRAPH 2003.

• [Green04] Simon Green, “Real-Time Approximations to
Subsurface Scattering,” GPU Gems 2004.

• [Annen04] Tomas Annen, Jan Kautz, Fredo Durand, and
Hans-Peter Seidel, “Spherical Harmonic Gradients for Mid-
Range Illumination,” Proceedings of Eurographics
Symposium on Rendering, June 2004

• [Mertens03] Tom Mertens, Jan Kautz, Philippe Bekaert,
Hans-Peter Seidel and Frank Van Reeth, “Efficient
Rendering of Local Subsurface Scattering ,” Proceedings of
Pacific Graphics 2003 .

• [Sander04] Pedro V. Sander, David Gosselin and Jason L.
Mitchell "Real-Time Skin Rendering on Graphics
Hardware," SIGGRAPH 2004 Technical Sketch. Los
Angeles, August 2004

• [Sloan04] Peter-Pike Sloan and Jason Sandlin, “Practical
PRT” Microsoft DirectX Meltdown 2004.

http://www.virtualcinematography.org/publications/acrobat/Face-s2003.pdf
http://www.virtualcinematography.org/publications/acrobat/Face-s2003.pdf
http://www.mpi-sb.mpg.de/~tannen/papers/shgradient.pdf
http://www.mpi-sb.mpg.de/~tannen/papers/shgradient.pdf
http://research.edm.luc.ac.be/~tmertens/localsss/index.html
http://www.ati.com/developer/siggraph04/Sander_SkinSketch.pdf
http://www.microsoft.com/downloads/details.aspx?FamilyID=00600351-4c8f-43cd-b3e3-a9975ecda0ce&DisplayLang=en

	Next Generation Skin Rendering
	Overview
	Why Skin is Hard
	Rough Skin Cross Section
	Basis for Our Approach
	Texture Space Subsurface Scattering
	Real Time Texture Space Lighting
	Texture Coordinates as Position
	Basic Approach
	Blur
	Blur Size Map and Blurred Lit Texture
	Shadows
	Shadow Maps
	Texture Lighting With Shadows
	Shadow Map and Shadowed Lit Texture
	Using Early-Z for Culling
	Back Face Culling
	Ruby2 Overview
	The Rendering Equation
	About the BSSRDF
	Simplification of the BSSRDF for PRT
	SH Basis
	PRT lighting
	Example Shader for PRT lighting
	Clustered PCA for PRT
	Case study: Ruby2
	Ruby2 Improvements
	Computing PRT for a Canonical Pose
	Incident lighting rotation
	Spatially varying illumination throughout the scene.
	Irradiance Volumes [Greger98]
	Generating Irradiance volumes
	Irradiance samples along a path
	Irradiance Gradients: Motivation
	Sampling for Irradiance Gradients
	Irradiance Gradient Examples
	Implementation Details
	Using PRT lighting with other shaders
	Other information encoded in the SH basis for PRT
	Example: Skin
	Example: Bike paint shader
	New Advances
	How to Combine Techniques from Ruby1 & Ruby2
	Blurring visibility
	Blurring visibility
	Spectral Scattering LUT
	1D LUTs for Spectral Scattering
	How to incorporate PRT lighting??
	Indirect PRT lighting
	Direct and Indirect Illumination
	Direct+Indirect Lighting Terms
	Allowing a greater deal of articulation..
	Zonal Harmonics (ZH)
	Shading Normals vs Surface Normals
	Zonal Harmonic Coefficients
	Example Shader for ZH PRT
	Results Using ZH vs SH
	References

