
Shipping Sims 2
Andrew Willmott, MAXIS



2

Why is Sims 2 Interesting?

Massive amounts of content
Animation heavy

Sound heavy

Massive amounts of people!

Graphics: “The users design the levels”

Visual game scripting language (Edith) drives 
much of gameplay.



3

Long Project

Started in late 2000

Mostly a small research team (5–20 people) for a 
few years

In full production for 2+ years

250+ people at the end

Slipped! From January ‘04 to September ‘04

Extended crunch



4

Stats: Highlights

4 CDs

11,000 shipped animations

1.1 million lines of code

2,400 UI images

1 GB sound data

8 GB development build footprint



5

Sausage Factory: Content

3D Resources

Object

Scripts

UI,

Effects,

Lighting

Scripts

2D Resources

Maya

Photoshop

Asset Compiler

Object

Scripters
AnimationModellingTech. Art



6

Sausage Factory: Code

Scene Graph
Simulator

3D Resources

Object

Scripts

UI

DirectX

Wrapper

UI Scripts

World DB Lot

Scripts

Effects,

Lighting

2D Resources



7

Areas We'll Look At

Lessons learnt, moving forward

CM

Engineering

Object Scripting

Design

Art



8

Art



9

ArtStats: Art

11,775 shipped animations

4,500 models, 8,100 textures

50,000 lines of effect scripts: 2000 total effects

57 Movies

3.5GB of source data for Sims, 630 MB for 
objects



10

ArtStats: UI

2,400 UI images

240 UI scripts

942 catalog items

21 language string packages

92 cursors



11

ArtArt Staffing

About 35 artists at peak
17 Animators (12-14 by ship)

13-14 Modellers

3 Technical Artists

2-3 UI Artists

2-4 Effects Artists

Some overlap



12

ArtArt Tools

Photoshop, Maya-based from the beginning

Brought over all Sims 1 animations, targetting 
new skeleton

Used none!

MEL front end for material system
In general, MEL very useful for adding UI, 
absorbing pipeline logic



13

ArtArt Pipeline

Photoshop -> TGA -> Asset Compiler (Go2SCO)
added direct PSD support: useful because of layers 

Maya -> EA3 -> Asset Compiler

Artists check in source files to perforce
Build machine runs them through pipeline, sends 
error summary to submitter (a few minutes)

Also updates animation/models report: web-based 
view of every asset and its stats



14

ArtThe Skeleton

27 facial targets 
packed into 4 delta 
streams

64 weighted bones

116 bones total, 
including grips and 
other registration 
points

Skeleton not locked



15

ArtModelling

Lucky enough to have continuity from Sims 1x

Sims: maintained single texture sheet approach, 
but composited tops/bottoms together

Artists weren’t given a poly budget: batch count 
is all

Ditto textures(!)

Contracted out object LODs: tried to always 
have a single-material LOD



16

ArtModelling Feedback

Had Texel Density visualisation mode, for 
identifying “hot” objects where texels were 
wasted

Had an animated model/texture map display

Could switch between four different shader paths 
in viewer to verify lighting was correct.



17

ArtLighting

Art produced original lighting design. Had a 
TDD, and was prototyped.

Two dedicated people tuning lighting system via 
script system

System evolved according to art, especially early on

Artificial contrast boosters, emphasis on gradients

Downside: a large number of knobs, confusing for 
someone new.



18

ArtLevel of Detail

Static LOD

Never formally spec’d

All Sims had one LOD (two models total), about 
50% of objects had at least one LOD.

Initial overly-ambitious plans left us scrambling 
at the end

Dropped dynamic LOD switching due to visual 
glitches



19

ArtSound

143 MP3s

43,000 spx vox samples!

2,600 footsteps alone + 7,500 ambient samples

16,000 unique sound events

Fully half our data footprint: 1 GB
35,000 sound resources loaded going into the 
neighbourhood

?



20

Dsn.Design



21

Dsn.Design

Difficult!
Need to improve on one of the best games of all time

Attract new players

Without putting off previous players

Diverse audience
Past surveys have shown even split between at least 
four different styles of play

Aiming for 90+ metacritic rating



22

Dsn.It Gets Worse

Big pressure from EA! Constant demo pressure 
worked against design gelling

How much new stuff is enough?

The ‘spiralling delay’ trap–longer it takes, better 
it has to be

Some of earliest ideas cannibalized for 1x 
expansions, plus people who originated them

Changed one of the lead designers in 2003



23

Dsn.New Gameplay

Movies

Aging!

Generations and Genetics!

Big Life Moments & Cinematics

Aspirations?

Wants & Fears?!

Done. Phew.



24

Dsn.Process

After slip, needed extremely tight control to 
ensure we hit our mark:

Change review—any new design feature thoroughly 
vetted, most dropped

Feature producers dedicated to seeing a particular 
feature completed

Big new areas were tightly compartmentalized

E.g., wants and fears: two engineers working closely 
with OE and design/production



25

Dsn.It shipped!

The delay was crucial

Finally got enough compelling new gameplay to 
bring back previous buyers.

Finished (most of) engineering

1 million units sold in 10 days

Sales in Europe > North America

Lesson: Never give up!



26

Dsn.But at a Cost

Constant design change was a negative for the 
rest of the team

Most of Maxis moved to EARS in early 2004
Corresponding loss of studio identity

Various talented people burnt out, some leaving
 Worry that will impact future hiring prospects

Big incentive to learn how to manage “big 
product” process better!



27

OEObject Engineering

18-19 OEs

1,700 game objects!

Simulator and object scripts drive all gameplay

Mostly nice coupling of logic and associated 
game object

Simulator closely coupled with C++ primitives

Sometimes mismatch between complexity of C++ 
primitives and simplicity of Edith



28

OEArtist/OE Interaction

Essentially, artists provided source animation, 
OEs supplied blending (not ideal)

A big problem synchronising

Skunkworks project produced “Clockwork”, 
which allowed easy previewing of animations 
and associated effects

OEs could use this to explore art assets when 
writing scripts, rather than bugging artists



29

OEEdith

Less interesting than you think!

Actually, visual scripting doesn’t work very well
No revision history

No good search/replace

Single edit: once person at once

Difficult for script sweeps

At the end of the project, all OEs wanted to move 
away from it



30

OEEdith

Positives: having a good debugger is crucial

After SC4 and Sims 2, studio consensus is that 
Edith has more cons than pros

The future: Lua
Used on SC4 with some success

In use on various next gen titles

But debugger a work in progress



31

Eng.Engineering

Around 28 engineers at peak. Very roughly:
4 Simulation

5 UI

4 Graphics only, 7 Graphics/Gameplay/World

4 General

2 Animation

1 Audio



32

Eng.Stats: Engineering

1.1 million non-comment, non-blank lines of code
325,000: framework code shared across the studio

80,000 graphics engine, 45,000 animation

110,000: Shared between app/tools

540,000: game-specific. Gameplay, UI, world 
construction, lighting...

17,000 lines of material/shader scripts

1,000+ lines camera/catalog/lighting



33

Eng.Building Stuff

Dedicated engineer: The World DB
Terrain, all house geometry, object location

Bridge between gameplay and engine

Kept tile-based system
Mostly for UI/gameplay reasons

Actual world DB code mostly only cared about walls 
and rooms as quad-edge data structure

But this wound up being overly general



34

Eng.Routing



35

Eng.Routing

Achilles heel of Sims 1
Painful: “Party syndrome”

Contracted company to write a replacement
But, slow, memory hungry, not that good

Integral part of gameplay: needs iteration

Instead, dedicated an engineer to the system

Worked with OEs to solve most problems



36

Eng.Routing

Standard, quad-tree based

Smarts improved, higher tile granularity

Tied to simulator: gardener, ghost, fireman

“Step over”
Essential for all those messes on the floor

“Side stepping”
Two Sims can pass each other in a narrow space



37

Eng.Animation

Full multi-channel blending, two-bone IK

Look at
Sims can glance at each other on room entry etc.

Hair bounce

Standard Reach
Used for Sims to hit various targets

Cinematics



38

Eng.Effects System

Script-based system
Effects composed from “components”: particle 
systems, decals, sounds, models...

Hierarchical: can nest effects, “meta” particles

Random walks, particle stretch, attractors, colliders

Key: all scripts are hot-loaded, rapid iteration

Handles UI too: thought balloons, most build 
mode tools



39

Eng.Example: Fishies

The fish tank is all an effect
Fish are model particles with random walks bounded 
by colliders

Game can kick an effect between states

When fish die, wind force floats them upwards until 
they hit tank’s “top” collider

On collision, die and spawn dead fish model

Can also switch to state with food attractor



40

Eng.Neighbourhood

Lots were imposterized on lot exit
All walls and floors captured into small set of texture 
pages via render targets

Object substitution for “important” objects

SimCity tie-in with terrain generation
Roads and trees imported directly

Everything else is effects

User can even place these



41

Eng.Lighting System

Lighting was room based
Each room had a light rig generated for it 
automatically

User-placed lights only affected objects in that room

Portals transmitted light between rooms

Time of day states, smooth transitions
But, states cut to day/night only. Smooth object light 
transitions killed due to engine issues.



42

Eng.Lighting

Portals Room Light Rig



43

Eng.Lighting

Exterior lighting predefined

Objects and portals have various light 
multipliers depending on inside/outside

Falloff, cutoff, intensity, directionality, etc.

Had 2x “over-bright” lighting

Floor and walls were light mapped
2D Diffusion algorithm used for “faux” radiosity



44

Eng.Shadows

Terrain and house: height map shadows
Fast CPU-side algorithm

Baked directly into light maps

Allowed simple object-as-a-whole shadowing

“Cookie-cutter” projective shadows
Dynamic only for Sims, and some animating objects

Static for objects, updated in a staggered manner 
with a frame budget.



45

Eng.Shadows

Tricks
Blur and threshold, so could use pretty low-res maps

Share for identical objects with same rotation

Many shadows packed into a single render target 

Indoor: GUOBS
Prebaked “straight down + ambient” shadows

Contact shadows, e.g. for wall objects



46

Eng.Scene Graph

Graphics engine was a fully general scene graph

All model, camera, and hardware light 
manipulations were carried out via graph node 
manipulations

A model was just a (tagged) subbranch of the 
scene

Could be many nodes: hundreds for a Sim

Many operations involved traversing a branch



47

Eng.Graphics Performance

Many objects in a house

Terrain and house split into sectors for culling 
and dynamic lighting

As batch count hits the thousands, start to get 
CPU hit

Generic scene-graph-based graphics engine rebuilt 
display list every frame: CPU hit per part

DIP cost becomes prohibitive



48

Eng.Solution: Dirty Rects



49

Eng.Dirty Rects

No, really. (And we thought SC4 was it.)

Initial “hold” scheme gradually morphed into an 
SC4-style static/dynamic layer model

Cause of some of our card compatibility 
problems. (Copying depth surfaces is tricky)

Lighting system required complicated last-minute 
update to generate dirtied areas: tile-based

Shadows, particle systems, etc. retrofitted



50

Eng.Target Platforms

Order of magnitude differences between our low 
end and high end in many categories

Memory, VRAM, Card capabilities

Had to support non-T&L commodity Intel 
hardware

Pixomatic fallback for unsupported cards

Biggest target was DX7-level cards



51

Eng.Game Configuration

Complicated!

Used SC4-derived configuration system, but with 
more logic in the scripts

Cards are identified from vendor ID, plus driver 
version

Special cases as appropriate

Usual headache estimating texture memory

Relying on caps bits does not work at all



52

Eng.Memory

A lot of STL
Not always efficient, but golden for leak prevention

Ref counting and interfaces: AutoRefCount<>

Custom allocators
Per-object pools: very low allocate/dealloc overhead

A refined cross-platform evolution of dlmalloc

Per-class leak detectors



53

Eng.Leak Observations

Ranking leak causes:
By far, manual news/deletes

Then manual refcounting.

Finally, ref-count loops due to improper Init()/
Shutdown().

Biggest finalling leak:
SC4: Lua!

Sims 2: Logging system!



54

Eng.Virtual Memory

Traditionally the crutch of PC games

Free lunch is running out: Virtual Memory 
fragmentation and exhaustion rearing its head

DLLs carve off large amounts of address space

Operating system takes ever larger amounts

Memory fragmentation can bloat application’s 
footprint



55

Eng.Virtual Memory

Blue: reserved, white: committed, 
green: exe/dll, red: mmap

2GB



56

Eng.Resource Management

Key based: originally 96 bit keys
Resource UID/Group UID/Instance UID triplet

Unpacked form: resource is a file

Packed form: package compiler mapped resource 
directory hierarchy into a set of large files

Worked well for previous large-content games



57

Eng.Problems

Overused resources. Some simulator resources 
were tiny: 12 bytes each!

Models stored as scene graph nodes etc.: a single 
model could easily become 30-50 resources

15,000 models/anims -> 100,000+ resources

Key collision: Sims 2 engine allocated resource/
group via class UIDs, and hashed string file 
names into instance ID. A hash is not a UID.



58

Eng.Problems

What about custom content?
Player A loads skins created by players B & C

Naming doesn’t work: they both called it “Bob”

Large number of files meant the development 
build’s load time became prohibitively slow

Load logs were main tool for identifying problem 
areas: simple time-stamped checkpoints.

Added development build caches



59

Eng.Solutions

In the end, just extended instance ID to 64 bits
Case study in making risky changes late in 
development. (Happened after BodyShop ship)

Work was done in a sandbox separate from main 
development line, and tested thoroughly before merge

For custom content, relied on trusty 128-bit GUID

Alternative: use hashing, deal with collisions. But 
gets complicated fast. Simple brute force solution is 
preferable.



60

CMConfiguration Management

Soaked up a lot of effort: 6-8 engineers

Testing
Drove the game through the command console

Tests could then be scripted using a simple command 
script. 285+ test scripts!

Highly successful approach, used on a number of 
previous products

Simple “sniff” test required before all check-ins.



61

CMConfiguration Management

Adopted “DevTrack” bug database during SC4
Awful—slow and buggy, but stuck with it, improved

Interaction with testers limited to this

Testers: hundreds

“Robbie” tool for rolling out builds
Builds copied incrementally. Could be slow

No rollback facility!

Stack traces to web site



62

CMSource Control

Two code lines, builds from both were tested

Pre-checkin code reviews tried early and 
abandoned. Reinstated during finalling.

DevLand Mainline

Build 073Build 123

Testing Testing

Production/
Art



63

Lessons Learnt



64

What Went Right

We could always hit art lock. The explosion in art 
assets required turned out to be the least of our 
scaling problems

Learn from the animation industry—they’ve been 
doing this for a while!

Hire from the animation industry. As content gets 
larger, processes get ever more similar



65

Art Lessons

Need stable design!
Too many cooks syndrome

Need concept art, templates, established look

Modellers <-> animators <-> OEs sit closer 
together

More consultation from engineering. Tighter 
turnaround for code changes

Lack of technical art types hurt



66

Design Risk

Well known: cost of a bug increases the later you 
catch it

Corollary: cost of design changes increases 
exponentially the later they occur

But Sims 2 couldn’t afford to ship without getting 
the design right

Caught between a rock and a hard place, but 
need to avoid this in future.



67

Engineering Lessons

Concentrate on the game, not the engine

Beware of cathedral building: Get systems in 
place early

Scene graph belongs in the pipeline

Never ignore value of shipping-hardened code

Don’t contract out core gameplay components

More urgency!



68

What Went Wrong

Transporter Accident #231



69

Over-Engineering

Some areas of the code base were massively 
overengineered

E.g., pixel formats were represented by a number of 
COM interfaces. 2200+ lines of code in all. 

Bubble-wrap syndrome
Feels like it should be simpler to do X!

Prefer toolkit to one-stop-shop
Too generic = too hard to change and iterate



70

Template Meta Programming

Sims 2 Math/Vector library used this
Performance improvement was never actually 
measured by writer. Turned out to be a slight 
decrease in performance in optimized release build

Negatives:
Impact on debug speed was horrific (75% hit)

Very difficult to read

Very difficult to debug: deep stack traces



71

API Churn

Lock low level parts of the game well before the 
final phase of development!

API churn in low level systems is unacceptable
Engineers can’t keep track of current feature set, or 
propagate knowledge about that feature set

Introduction of subtle bugs

Can’t build on sand



72

Engineering

Main problem of engineering team: lack of 
productivity for some core tasks

Spent weeks or months trying to do some things “the 
right way”

Planned overly-ambitious systems, ran out of time to 
implement them: Cathedral building

But... what’s wrong with taking time to build the 
cleanest and most generic system possible?



73

Opportunity Cost Examples

We have nice normal maps. They only show up 
on a 128MB+ card

Static LODs: picked depending on machine type, 
don’t change in the lot

Shader path that consumed most dev. time (DX8) 
was dropped in last weeks

Hacky game-side culling. (Objects hidden 
manually by world DB code.)



74

Going Forward

How are we applying these lessons?

Real Estate has location, we have...



75

Preproduction

One of the biggest learning experiences of Sims 
2: this is crucial for large projects

Explore and solidify design with prototyping

Assemble look bibles, concept art, storyboards

Explore any new technologies necessary

Then, slowly ramp up to full production
Must be sure to have all ducks in a row, and only add 
people when underlying systems are ready



76

Why not before?

Sims 2 was small, “under the radar” research 
team for a few years

Flipped directly to production when studio focus 
changed

Maxis did not have a lot of experience with 
preproduction concept

Deadlines and team sizes hadn’t been such that it 
was crucial



77

Communication

Return of the King used “pod” style of working
Small, tightly coupled, interdisciplinary groups

Model has worked well at Maxis in an ad hoc 
way, now being adopted more formally

Goal is to increase communication bandwidth 
where it matters, 

Also: flatten hierarchy



78

Example: Pools

Cut for original January deadline 



79

Swimming Pools

Skunkworks team got together to save them:
Simple set of animations

Changes to router and world to treat as special room

Basic interacting water surface with caustics

All put together in only a few weeks outside 
normal tasks

Slip allowed more animations and lighting 
refinement



80

Art

Already implementing pre-production in a 
number of development titles

Successfully using concept artist to rapidly explore 
both look and design space

Work to have content validation tools working in 
place before production

Replicate Sims 2 auto-content-build and content 
browser on other projects



81

Engineering

It's all about managing complexity

Prefer smaller, tighter teams focused on 
particular features

Prefer rapid development when the new system is 
an unknown

KISS



82

Technology

Transitioning to Renderware
Toolkit approach to graphics API

Adopting effects system as shared technology
Also being used for rapid prototyping

Switching to text-based scripting

Better and more integrated game object/asset 
databases

Continue to evolve scripted testing



83

Acknowledgements

Leo Hourvitz

Ben Thompson

Paul Boyle

Alec Miller

Justin Graham

David Benson


