Shipping Sims 2

Andrew Willmott, MAXIS

Why 1s Sims 2 Interesting?

o Massive amounts of content
s Animation heavy

+ Sound heavy

o Massive amounts of people!

o Graphics: “The users design the levels”

o Visual game scripting language (Edith) drives

much of gameplay.

M2

Long Project

o Started in late 2000

o Mostly a small research team (520 people) for a
few vears

o In full production for 2+ years
o 250+ people at the end
o Slipped! From January ‘04 to September ‘04

| M2

o Extended crunch

Stats: Highlights

o 4 CDs

o 11,000 shipped animations

o /.1 million lines of code

o 2,400 Ul images

o | GB sound data

o 8 GB development build footprint

Sausage Factory: Content

<Tech. Art) (Modelling) (Animation) .‘ Opject]
Scripters

j Maya
Photoshop
Ul,

Effects,

Lighting T
Scripts

Asset Compiler J

5

Object
Scripts

Sausage Factory: Code

Areas We'll Look At

Object Scripting

o Lessons learnt, moving forward

Stats: Art ‘

o 11,775 shipped animations

o 4,500 models, 8,100 textures

o 50,000 lines of effect scripts: 2000 total effects
o 57 Movies

o 3.5GB of source data for Sims, 630 MB for
objects

Stats: Ul

o 2,400 Ul images

o 240 Ul scripts

o 942 catalog items

o 21 language string packages

o 92 cursors

10

Art Staffing

o About 35 artists at peak

s 17 Animators (12-14 by ship)

s 13-14 Modellers

s 3 Technical Artists
s 2-3 Ul Artists

s 2-4 Effects Artists

o Some overlap

11

Art Tools ‘

o Photoshop, Maya-based from the beginning

o Brought over all Sims 1 animations, targetting
new skeleton

o Used none!

o MEL front end for material system

s In general, MEL very useful for adding UI,
absorbing pipeline logic

12

Art Pipeline (m)

o Photoshop -> TGA -> Asset Compiler (Go2SCO)
s added direct PSD support: useful because of layers

o Maya -> EA3 -> Asset Compiler

o Artists check in source files to perforce

¢ Build machine runs them through pipeline, sends
error summary to submitter (a few minutes)

s Also updates animation/models report: web-based
view of every asset and its stats

The Skeleton

o 27 facial targets
packed into 4 delta
streams

o 64 weighted bones

o [16 bones total,
including grips and
other registration
points

o Skeleton not locked

Modelling (m)

o Lucky enough to have continuity from Sims 1x

o Sims: maintained single texture sheet approach,
but composited tops/bottoms together

o Artists weren’t given a poly budget: batch count
is all

o Ditto textures(!)

o Contracted out object LODs: tried to always

have a single-material LOD
S 5™

Modelling Feedback (m)

o Had Texel Density visualisation mode, for
identifying “hot” objects where texels were
wasted

o Had an animated model/texture map display

o Could switch between four different shader paths
in viewer to verify lighting was correct.

Lighting (m)

o Art produced original lighting design. Had a
TDD, and was prototyped.

o Two dedicated people tuning lighting system via
script system

+ System evolved according to art, especially early on
+ Artificial contrast boosters, emphasis on gradients

s Downside: a large number of knobs, confusing for

sSomeone new.
17 m

Level of Detail ‘

o Static LOD
o Never formally spec’d

o All Sims had one LOD (two models total), about
50% of objects had at least one LOD.

o Initial overly-ambitious plans left us scrambling
at the end

o Dropped dynamic LOD switching due to visual

glitches
N 55

Sound ()’

o [43 MP3s

o 43,000 spx vox samples!

o 2,600 footsteps alone + 7,500 ambient samples
o 16,000 unique sound events

o Fully half our data footprint: 1 GB

o 35,000 sound resources loaded going into the
neighbourhood

19

Design o

o Difficult!
s Need to improve on one of the best games of all time
» Attract new players
s Without putting off previous players

o Diverse audience

+ Past surveys have shown even split between at least
four different styles of play

o Aiming for 90+ metacritic rating

21

It Gets Worse ‘

o Big pressure from EA! Constant demo pressure
worked against design gelling

o How much new stuff is enough?

o The ‘spiralling delay’ trap—longer it takes, better
it has to be

o Some of earliest ideas cannibalized for 1x
expansions, plus people who originated them

o Changed one of the lead designers in 2003

New Gameplay o

o Movies

o Aging!

o Generations and Genetics!

o Big Life Moments & Cinematics
o Aspirations?

o Wants & Fears?!

o Done. Phew.

23

Process ‘

o After slip, needed extremely tight control to
ensure we hit our mark:

o Change review—any new design feature thoroughly
vetted, most dropped

+ Feature producers dedicated to seeing a particular
feature completed

+ Big new areas were tightly compartmentalized

o E.g., wants and fears: two engineers working closely

with OF and design/production m
24

It shipped! o

o The delay was crucial

o Finally got enough compelling new gameplay to
bring back previous buyers.

o Finished (most of) engineering
o [million units sold in 10 days
o Sales in Europe > North America

o Lesson: Never give up!

But at a Cost Do

o Constant design change was a negative for the
rest of the team

o Most of Maxis moved to EARS in early 2004
s Corresponding loss of studio identity

o Various talented people burnt out, some leaving

o Worry that will impact future hiring prospects

o Big incentive to learn how to manage “big

product” process better! m
26

Object Engineering @

o [8-19 OEs
o [,700 game objects!
o Simulator and object scripts drive all gameplay

o Mostly nice coupling of logic and associated
game object

o Simulator closely coupled with C++ primitives

o Sometimes mismatch between complexity of C++

primitives and simplicity of Edith §3E _ :;
27

Artist/OE Interaction @@

o Essentially, artists provided source animation,
OLs supplied blending (not ideal)

o A big problem synchronising

o Skunkworks project produced “Clockwork”,
which allowed easy previewing of animations
and associated effects

o OFEs could use this to explore art assets when
writing scripts, rather than bugging artists

Edith o

o Less interesting than you think!

o Actually, visual scripting doesn’t work very well
+ No revision history
+ No good search/replace
+ Single edit: once person at once

+ Difficult for script sweeps

o At the end of the project, all OEs wanted to move
away from it

29

Edith o

o Positives: having a good debugger is crucial

o After SC4 and Sims 2, studio consensus is that
Edith has more cons than pros

o The future: Lua
o Used on SC4 with some success
s In use on various next gen titles

o But debugger a work in progress

30

Engineering £

o Around 28 engineers at peak. Very roughly:
s 4 Simulation
« S5 UI
s 4 Graphics only, 7 Graphics/Gameplay/World
s 4 General

o 2 Animation

o | Audio

31

Stats: Engineering &

o [.1 million non-comment, non-blank lines of code
¢ 325,000: framework code shared across the studio
+ 80,000 graphics engine, 45,000 animation
s 110,000: Shared between app/tools

s 540,000: game-specific. Gameplay, Ul, world
construction, lighting...

o 17,000 lines of material/shader scripts

o 1,000+ lines camera/catalog/lighting m
32

Building Stuff @

o Dedicated engineer: The World DB

s Terrain, all house geometry, object location
o Bridge between gameplay and engine
o Kept tile-based system

s Mostly for Ul/gameplay reasons

s Actual world DB code mostly only cared about walls
and rooms as quad-edge data structure

s But this wound up being overly general m
33

Routing £

o Achilles heel of Sims 1
s Painful: “Party syndrome”

o Contracted company to write a replacement

s But, slow, memory hungry, not that good

s Integral part of gameplay: needs iteration
o Instead, dedicated an engineer to the system

o Worked with OFEs to solve most problems

Routing £

o Standard, quad-tree based
o Smarts improved, higher tile granularity
o Tied to simulator: gardener, ghost, fireman

o “Step over”
+ Essential for all those messes on the floor
o “Side stepping”

+ Two Sims can pass each other in a narrow space

36

Animation eng.

o Full multi-channel blending, two-bone IK

o Look at
+ Sims can glance at each other on room entry etc.

o Hair bounce

o Standard Reach

s Used for Sims to hit various targets

o Cinematics

37

Effects System £

o Script-based system

s Effects composed from “components”: particle
systems, decals, sounds, models...

s Hierarchical: can nest effects, “meta” particles
s Random walks, particle stretch, attractors, colliders

o Key: all scripts are hot-loaded, rapid iteration

o Handles Ul too: thought balloons, most build

mode tools
: ISMs2

Example: Fishies &

o The fish tank is all an effect

s Fish are model particles with random walks bounded
by colliders

s Game can kick an effect between states

+ When fish die, wind force floats them upwards until
they hit tank’s “top” collider

s On collision, die and spawn dead fish model

s Can also switch to state with food attractor

Neighbourhood £

o Lots were imposterized on lot exit

s All walls and floors captured into small set of texture
pages via render targets

s Object substitution for “important” objects
o SimCity tie-in with terrain generation
¢ Roads and trees imported directly

+ Everything else is effects

+ User can even place these -
40 m

Lighting System &

o Lighting was room based

s Each room had a light rig generated for it
automatically

s User-placed lights only affected objects in that room

+ Portals transmitted light between rooms

o Time of day states, smooth transitions

+ But, states cut to day/night only. Smooth object light
transitions killed due to engine issues.

Lighting

Lighting £

o Exterior lighting predefined

o Objects and portals have various light
multipliers depending on inside/outside

+ Falloff, cutoff, intensity, directionality, etc.
s Had 2x “over-bright” lighting
o Floor and walls were light mapped

+ 2D Diffusion algorithm used for “faux” radiosity

Shadows eng.

o Terrain and house: height map shadows
s Fast CPU-side algorithm
s Baked directly into light maps
s Allowed simple object-as-a-whole shadowing
o “Cookie-cutter” projective shadows
¢ Dynamic only for Sims, and some animating objects
+ Static for objects, updated in a staggered manner

with a frame budget. m
44 .

Shadows eng.

o Tricks
¢ Blur and threshold, so could use pretty low-res maps
+ Share for identical objects with same rotation

s Many shadows packed into a single render target

o Indoor: GUOBS

s Prebaked “straight down + ambient” shadows

s Contact shadows, e.g. for wall objects

45

Scene Graph £

o Graphics engine was a fully general scene graph

o All model, camera, and hardware light
manipulations were carried out via graph node
manipulations

o A model was just a (tagged) subbranch of the
scene

s Could be many nodes: hundreds for a Sim

s Many operations involved traversing a branch

46

Graphics Performance &

o Many objects in a house

o Terrain and house split into sectors for culling
and dynamic lighting

o As batch count hits the thousands, start to get
CPU hit

s Generic scene-graph-based graphics engine rebuilt
display list every frame: CPU hit per part

¢ DIP cost becomes prohibitive

Solution: Dirty Rects &

i Sims2Load: Done

.

G-&'ﬁ;{ﬁp PSP
’ |. Meon 6:01 am

Dirty Rects £

o No, really. (And we thought SC4 was it.)

o Initial “hold” scheme gradually morphed into an
SC4-style static/dynamic layer model

o Cause of some of our card compatibility
problems. (Copying depth surfaces is tricky)

o Lighting system required complicated last-minute
update to generate dirtied areas: tile-based

d

o Shadows, particle systems, etc. retrofitte
: SiMs2

Target Platforms &

o Order of magnitude differences between our low
end and high end in many categories

s« Memory, VRAM, Card capabilities

o Had to support non-T&L commodity Intel
hardware

o Pixomatic fallback for unsupported cards

o Biggest target was DX7-level cards

Game Configuration

o Complicated!

o Used SC4-derived configuration system, but with
more logic in the scripts

o Cards are identified from vendor ID, plus driver
version

o Special cases as appropriate

o Usual headache estimating texture memory

o Relying on caps bits does not work at allga ;Q
51

Memory £

o A lot of STL

+ Not always efficient, but golden for leak prevention
o Ref counting and interfaces: AutoRefCount<>
o Custom allocators

s Per-object pools: very low allocate/dealloc overhead

s A refined cross-platform evolution of dimalloc

o Per-class leak detectors

52

Leak Observations €@

o Ranking leak causes:
+ By far, manual news/deletes
¢ Then manual refcounting.

+ Finally, ref-count loops due to improper Init()/
Shutdown().

o Biggest finalling leak:
+ SC4: Lua!

s Sims 2: Logging system!

53

Virtual Memory @

o Traditionally the crutch of PC games

o Free lunch is running out: Virtual Memory
fragmentation and exhaustion rearing its head

o DLLs carve off large amounts of address space
o Operating system takes ever larger amounts

o Memory fragmentation can bloat application’s

footprint
. ISMs2

Virtual Memory

Blue: reserved, white: committed,
green: exe/dll, red: mmap
55

Resource Management ‘

o Key based.: originally 96 bit keys
¢ Resource UID/Group UlID/Instance UID triplet

o Unpacked form: resource is a file

o Packed form: package compiler mapped resource
directory hierarchy into a set of large files

o Worked well for previous large-content games

Problems eng.

o Overused resources. Some simulator resources
were tiny: 12 bytes each!

o Models stored as scene graph nodes etc.: a single
model could easily become 30-50 resources

o 15,000 models/anims -> 100,000+ resources

o Key collision: Sims 2 engine allocated resource/
group via class UIDs, and hashed string file
names into instance ID. A hash is not a UID.

Problems eng.

o What about custom content?
¢ Player A loads skins created by players B & C

o Naming doesn’t work: they both called it “Bob”

o Large number of files meant the development
build’s load time became prohibitively slow

s Load logs were main tool for identifying problem
areas: simple time-stamped checkpoints.

+ Added development build caches

Solutions eng.

o In the end, just extended instance ID to 64 bits

s Case study in making risky changes late in
development. (Happened after BodyShop ship)

+ Work was done in a sandbox separate from main
development line, and tested thoroughly before merge

o For custom content, relied on trusty 128-bit GUID

» Alternative: use hashing, deal with collisions. But
gets complicated fast. Simple brute force solution is

preferable. m
59

Configuration Management ‘v

o Soaked up a lot of effort: 6-8 engineers
o Testing
s Drove the game through the command console

 Tests could then be scripted using a simple command
script. 285+ test scripts!

s Highly successful approach, used on a number of
previous products

o Simple “sniff” test required before all chec?—ins.
60

Configuration Managemeng

o Adopted “DevIrack” bug database during SC4

o Awful—slow and buggy, but stuck with it, improved
+ Interaction with testers limited to this

o Testers: hundreds

o “Robbie” tool for rolling out builds

+ Builds copied incrementally. Could be slow

+ No rollback facility!

A Starl tvrarcoo tn voonh cito m
61

Source Control oM

BN
\4 \4
s |

Testing Testing

o Two code lines, builds from both were tested

o Pre-checkin code reviews tried early and
abandoned. Reinstated during finalling. / -

62

L.essons L.earnt

What Went Right

o We could always hit art lock. The explosion in art
assets required turned out to be the least of our
scaling problems

s Learn from the animation industry—they’ve been
doing this for a while!

s Hire from the animation industry. As content gets
larger, processes get ever more similar

64 M2

Art Lessons

o Need stable design!
s Too many cooks syndrome

+ Need concept art, templates, established look

o Modellers <-> animators <-> OEs sit closer
together

o More consultation from engineering. Tighter
turnaround for code changes

o Lack of technical art types hurt m
65

Design Risk

o Well known: cost of a bug increases the later you
catch it

o Corollary: cost of design changes increases
exponentially the later they occur

o But Sims 2 couldn’t afford to ship without getting
the design right

o Caught between a rock and a hard place, but
need to avoid this in future.

66 M2

Engineering Lessons

o Concentrate on the game, not the engine

o Beware of cathedral building: Get systems in
place early

o Scene graph belongs in the pipeline
o Never ignore value of shipping-hardened code

o Don'’t contract out core gameplay components

: M2

o More urgency!

What Went Wrong

I Sims Mango (c)

Transporter Accident #231

68

Over-Engineering

o Some areas of the code base were massively
overengineered

s E.g., pixel formats were represented by a number of
COM interfaces. 2200+ lines of code in all.

o Bubble-wrap syndrome

s Feels like it should be simpler to do X!

o Prefer toolkit to one-stop-shop

+ Too generic = too hard to change and itemt; E :
69

Template Meta Programming

o Sims 2 Math/Vector library used this

s Performance improvement was never actually
measured by writer. Turned out to be a slight
decrease in performance in optimized release build

o Negatives:
» Impact on debug speed was horrific (75% hit)
» Very difficult to read
» Very difficult to debug: deep stack traces

m M2

API Churn

o Lock low level parts of the game well before the
final phase of development!

o API churn in low level systems is unacceptable

+ Engineers can’t keep track of current feature set, or
propagate knowledge about that feature set

» Introduction of subtle bugs

71 M2

o Can’t build on sand

Engineering

o Main problem of engineering team: lack of
productivity for some core tasks

+ Spent weeks or months trying to do some things “the
right way”

¢ Planned overly-ambitious systems, ran out of time to
implement them: Cathedral building

o But... what’s wrong with taking time to build the
cleanest and most generic system possible?

: M2

Opportunity Cost Examples

o We have nice normal maps. They only show up
ona 128MB+ card

o Static LODs: picked depending on machine type,
don’t change in the lot

o Shader path that consumed most dev. time (DXS)
was dropped in last weeks

o Hacky game-side culling. (Objects hidden
manually by world DB code.)

: M2

Going Forward

o How are we applying these lessons?

o Real Estate has location, we have...

74

Preproduction

o One of the biggest learning experiences of Sims
2: this is crucial for large projects

+ Explore and solidify design with prototyping
s Assemble look bibles, concept art, storyboards
s Explore any new technologies necessary

o Then, slowly ramp up to full production

o Must be sure to have all ducks in a row, and only add
people when underlying systems are ready

: M2

Why not betfore?

o Sims 2 was small, “under the radar” research
team for a few years

o Flipped directly to production when studio focus
changed

o Maxis did not have a lot of experience with
preproduction concept

o Deadlines and team sizes hadn’t been such that it

was crucial

Communication

o Return of the King used “pod” style of working
s Small, tightly coupled, interdisciplinary groups

o Model has worked well at Maxis in an ad hoc
way, now being adopted more formally

o Goal is to increase communication bandwidth

where it matters,
; 'SMs2.

o Also: flatten hierarchy

Pools

o Cut for original January deadline

78

Swimming Pools

o Skunkworks team got together to save them:
+ Simple set of animations
o Changes to router and world to treat as special room

s Basic interacting water surface with caustics

o All put together in only a few weeks outside
normal tasks

o Slip allowed more animations and lighting

refinement m
79

Art

o Already implementing pre-production in a
number of development titles

» Successfully using concept artist to rapidly explore
both look and design space

o Work to have content validation tools working in
place before production

o Replicate Sims 2 auto-content-build and content
browser on other projects

80 M2

Engineering

| wss |

o It's all about managing complexity

o Prefer smaller, tighter teams focused on
particular features

o Prefer rapid development when the new system is

an unknown m
81

Technology

o Transitioning to Renderware
+ Toolkit approach to graphics API

o Adopting effects system as shared technology
» Also being used for rapid prototyping

o Switching to text-based scripting

o Better and more integrated game object/asset
databases

o Continue to evolve scrinted testino m
82

Acknowledgements

o Leo Hourvitz

o Ben Thompson
o Paul Boyle

o Alec Miller

o Justin Graham

o David Benson

83

